

Technische Universität München

Fakultät für Elektrotechnik und Informationstechnik

Lehrstuhl für Integrierte Systeme

Dissertation

A Network Processor Architecture with

Application-Optimized Reconfigurable

Processing Paths (FlexPath NP)

Dipl.-Ing. Rainer Ohlendorf

Munich, September 28th, 2010

Technische Universität München

Lehrstuhl für Integrierte Systeme

A Network Processor Architecture with

Application-Optimized Reconfigurable

Processing Paths (FlexPath NP)

Rainer Ohlendorf

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und

Informationstechnik der Technischen Universität München zur Erlangung des

akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Eckehard Steinbach

Prüfer der Dissertation:

 1. Univ.-Prof. Dr. sc.techn. Andreas Herkersdorf

 2. Univ.-Prof. Dr.-Ing. Erik Maehle, Universität zu Lübeck

Die Dissertation wurde am 28. September 2010 bei der Technischen Universität

München eingereicht und durch die Fakultät für Elektrotechnik und

Informationstechnik am 1. Juli 2011 angenommen.

4

 5

Erklärung

Ich erkläre an Eides statt, dass ich die der Fakultät für Elektrotechnik und

Informationstechnik der Technischen Universität München zur Promotionsprüfung

vorgelegte Arbeit mit dem Titel:

A Network Processor Architecture with Application-Optimized Reconfigurable

Processing Paths (FlexPath NP)

am Lehrstuhl für Integrierte Systeme unter Anleitung und Betreuung durch

Prof. Dr. sc.techn. Andreas Herkersdorf ohne sonstige Hilfe erstellt und bei der

Abfassung nur die gemäß § 6 Abs. 5 angegebenen Hilfsmittel benutzt habe.

() Ich habe die Dissertation in dieser oder ähnlicher Form in keinem

anderen Prüfungsverfahren als Prüfungsleistung vorgelegt.

() Die vollständige Dissertation wurde in … veröffentlicht. Die Fakultät

 für Elektrotechnik und Informationstechnik hat der Vorveröffentlichung

 zugestimmt.

() Ich habe den angestrebten Doktorgrad noch nicht erworben und

 bin nicht in einem früheren Promotionsverfahren für den angestrebten

 Doktorgrad endgültig gescheitert.

() Ich habe bereits am … bei der Fakultät für … der Hochschule … unter

 Vorlage einer Dissertation mit dem Thema … die Zulassung zur

 Promotion beantragt mit dem Ergebnis: …

Die Promotionsordnung der Technischen Universität München vom 1.8.2001 in der

Fassung der 8. Änderungssatzung vom 22.12.2009 ist mir bekannt.

München, den 28. September 2010 _____________________________

 (Rainer Ohlendorf)

6

 7

Acknowledgments

At first, I would like to thank Prof. Andreas Herkersdorf for having given me the

opportunity to work on such an interesting research project under his guidance. The

past six years at the Institute for Integrated Systems at TUM were a great chance for

me to broaden my knowledge based on my initial course of studies and have

provided me with valuable experiences through both the research work and the

frequent interaction with students from all over the world. In addition, I would like to

thank Prof. Erik Maehle from the University of Lübeck for his interest in this topic

and for acting as my secondary examiner on the doctoral examination commission.

At the institute, my foremost thanks is devoted to Dr. Thomas Wild, who - as acting

head of the networking research activities - was always a prime contact person and

counselor for the discussion of viable conceptual alternatives and research

direction. His detailed feedback concerning the structure of the dissertation and

assistance in finding the right line of arguments greatly helped me to improve the

presentation of the achieved contributions. For the more technical aspects of the

work, I have to thank my officemate and FlexPath project partner Michael Meitinger

for the frequent and fruitful discussions, in which we were able to solve many

challenges to our mutual benefit. Also the co-operation with Daniel Llorente, who

designed the SmartMem DMA engine next door, has to be appreciatively

mentioned.

Further important help came from Johannes Zeppenfeld, who has contributed with

his computer science background in developing sound simulation models,

especially during the development and evaluation of the HDGA classification

algorithm. I have learned quite a lot in our discussions and could significantly

expand my C/C++ programming skills. Christopher Claus was of great help in

resolving FPGA-related problems as the institute's expert in the Xilinx tool chain.

Finally, I would like to mention the following current and previous colleagues at the

institute, who have all contributed to a very pleasant working atmosphere: Felix

Miller, Gregor Walla, Roman Plyaskin, Stefan Wallentowitz, Michael Feilen, Prof.

Walter Stechele, Doris Zeller, Verena Draga, Holm Rauchfuss, Robert Hartl and Dr.

Paul Zuber.

Finally, I would also like to thank my family for their support, which was also an

important factor in being able to successfully complete this thesis.

8

 9

Table of Contents

Table of Contents .. 9

Summary of the Thesis .. 13

Zusammenfassung der Arbeit ... 14

1. Introduction ... 15

2. State of the Art .. 23

2.1. Network Processors... 25

2.1.1. Commercial Network Processor Architectures 25

2.1.2. Academic Network Processor Projects .. 29

2.1.3. Conclusions ... 33

2.2. Networking Applications .. 37

2.2.1. IP Forwarding ... 37

2.2.2. QoS Mechanisms ... 37

2.2.3. Security Applications.. 38

2.2.4. Multimedia Applications ... 40

2.2.5. Mobile Networks .. 42

2.2.6. Carrier-grade Ethernet and Internet Backbone Evolution 45

2.2.7. Conclusions ... 46

2.3. Packet Classification .. 49

2.3.1. Single-Field Classification .. 49

2.3.2. Multi-Field Classification .. 56

2.3.3. Packet Classification and Logic Minimization................................... 69

2.3.4. Conclusions ... 70

2.4. Multi-Processor Load Balancing .. 73

2.4.1. Hashing-based Load Balancing Schemes .. 73

2.4.2. Hash-based Load Balancing with Overload Spraying 74

2.4.3. Adaptive HRW Hashing (AHH) .. 75

2.4.4. Adaptive Burst Shifting (ABS) ... 75

2.4.5. Hashing Adapted by Burst Shifting (HABS) 76

2.4.6. Conclusions ... 77

3. FlexPath NP Architecture... 79

3.1. Motivation and Problem Formulation ... 79

3.2. FlexPath NP Concept .. 83

3.3. Concept Evaluation .. 89

3.3.1. Analytical Evaluation of AutoRoute in FlexPath NP 89

3.3.2. Simulative Evaluation of Hardware-Offload in FlexPath NP 93

3.4. Conclusions ... 105

4. Concept and Implementation of Path Dispatcher .. 107

4.1. Introduction and Problem Formulation ... 107

10

4.2. The Heterogeneous Decision Graph Algorithm (HDGA) 113

4.2.1. Formulation of Rule Base using Boolean Variables 114

4.2.2. Matrix Representation of Rule Base and Pre-Processing 116

4.2.3. Construction of a Binary Decision Tree ... 117

4.2.4. Transforming the Tree into the HDGA Decision Graph.................... 125

4.2.5. Updates of the Rule Base and HDGA Data Structures 127

4.3. HDGA Performance and Scalability .. 129

4.4. Implementation Issues .. 133

4.4.1. Path Dispatcher Interfaces .. 133

4.4.2. Design Space Exploration for HDGA Implementation 135

4.4.3. FPGA Implementation Results .. 145

4.5. Conclusions .. 147

5. Multi-Processor Load Balancing in FlexPath NP .. 149

5.1. Introduction .. 149

5.2. Load Balancing Strategies for Different Application Classes 151

5.2.1. Stateless Network Processing Applications 151

5.2.2. Stateful Network Processing Applications 153

5.2.3. Combination of Stateless and Stateful Networking Applications 158

5.3. Functional Simulation of Load Balancing Techniques 159

5.3.1. Simulation Model .. 159

5.3.2. Individual Performance of Load Balancing Techniques 162

5.3.3. Performance of S&H Load Balancing ... 167

5.4. Conclusions .. 173

6. FlexPath NP Demonstrator ... 175

6.1. Demonstrator Goals and Platform .. 175

6.2. FlexPath NP System Overview ... 179

6.3. Measurement Setup ... 185

6.4. Processor-centric Reference Measurements .. 187

6.5. Hardware-offload Aspects of FlexPath NP ... 189

6.5.1. Forwarding Performance Using Pre-Processor 189

6.5.2. Forwarding Performance Using Pre- and Post-Processors 192

6.5.3. Forwarding Performance Using AutoRoute..................................... 194

6.5.4. Packet Latencies .. 196

6.5.5. Packet Loss .. 199

6.6. Load Balancing Algorithms on FlexPath NP ... 201

6.6.1. QoS-aware AutoRoute .. 202

6.6.2. QoS-aware Packet Spraying ... 204

6.6.3. Spraying and HLU (S&H) ... 206

6.7. Conclusions .. 209

7. Conclusion ... 211

7.1. Contributions of this Thesis .. 211

 11

7.2. Outlook to Further Work .. 215

Appendix ... 219

Implementation Details of selected FlexPath NP-specific Functional Modules.. 221

Pre-Processor .. 221

Context Assembler .. 223

Path Dispatcher ... 225

SmartMem ... 230

Context Generation Engine .. 232

Traffic Manager .. 235

References .. 237

List of Figures .. 249

List of Tables ... 252

Code Listings .. 253

Abbreviations .. 255

List of Prior-Printed Publications ... 261

12

 13

Summary of the Thesis

This thesis deals with improvements of switching nodes in Internet-based

communication networks. During the past decade, increasing requirements for the

networking infrastructure (i.e. routers, gateways, etc.) have led to the development

of network processors (NPs). Network processors are highly integrated silicon

components that achieve both high flexibility and performance. Contemporary

networking infrastructure has to provide the flexibility of adapting to ever-changing

new application needs, while the link speeds have increased to tens of gigabits per

second with 100 Gbit/s already on the horizon. The current thesis proposes a new

architectural approach to the network processing problem, in which dedicated

hardware modules in the ingress and egress data path relieve a central processor

cluster. The flexibility of the programmable processor cluster can be retained for

those tasks that require this flexibility. More standardized tasks are solved by

application-specific high performance hardware. Especially, a hardware unit for

packet classification is proposed, which identifies the incoming traffic in real-time

and dispatches the packets to the most suitable processing elements within the

heterogeneous multi-processor cluster. Beyond a static processing path selection

based on networking application characteristics, I have also investigated load

balancing strategies that distribute the packets to paths supporting different quality-

of-service levels within the NP. The presented hardware offload doubles the

forwarding throughput of the NP in comparison to state of the art architectures with

the same amount of processing resources.

14

Zusammenfassung der Arbeit

Die vorliegende Arbeit beschäftigt sich mit Verbesserungen von Netzknoten in

Internet-basierten Kommunikationsnetzen. Steigende Anforderungen an die

Netzwerkinfrastruktur (z.B. in Routern, Gateways, etc.) haben im letzten Jahrzehnt

die Entwicklung von Netzwerkprozessoren (NPs) befördert. Netzwerkprozessoren

sind hochintegrierte Siliziumbausteine, die gleichzeitig hohe Anforderungen an

Flexibilität und Performance erfüllen. Die heutige Netzwerk-Infrastruktur muss

flexibel genug sein, um sich an immer neu entstehende Anwendungsanforderungen

anzupassen, während die Geschwindigkeiten auf den Übertragungsstrecken

mittlerweile bei mehreren zig Gigabit pro Sekunde liegt und erste 100 Gbit/s

Strecken in naher Zukunft folgen werden. Die vorliegende Arbeit schlägt einen

neuartigen architekturalen Ansatz im Design von Netzwerkprozessoren vor, in dem

dedizierte Hardware-Module im Ein- und Ausgangsdatenpfad den zentralen

Netzwerkprozessorkomplex entlasten. Die Flexibilität der programmierbaren

Ressourcen wird nur noch für die Aufgaben verwendet, die diese Flexibilität auch

benötigen, während andere, besser standardisierte Aufgaben von spezialisierten

Hardware-Modulen bearbeitet werden. Im Speziellen wird eine Hardware-

Klassifikationseinheit vorgeschlagen, die den ankommenden Verkehrsfluss in

Realzeit untersucht und die Pakete auf die für sie am Besten geeigneten

Verarbeitungseinheiten innerhalb des heterogenen Multiprozessorclusters verteilt.

Neben der statischen Verarbeitsungspfadwahl aufgrund von

Applikationsanforderungen, habe ich in dieser Arbeit Lastbalancierungsstrategien

untersucht, welche die Pakete auf Pfade mit unterschiedlichen

Dienstgütemerkmalen (quality-of-service) innerhalb des NP-Systems verteilt. Die

vorgestellte Entlastung des Prozessorclusters ermöglicht eine Verdoppelung des

Paketdurchsatzes im Vergleich zu einem herkömmlichen NP mit gleich vielen

Rechenressourcen.

Chapter 1 - Introduction

 15

1. Introduction

The work covered in this thesis is positioned in the context of Internet-based

communication systems. I have proposed and investigated a new architecture for

network processors (FlexPath NP) that optimizes the packet processing

performance by providing different run-time reconfigurable processing paths and

hardware-offload features that relieve the programmable processor resources. The

following sections introduce the reader to the topic by describing the evolution of

the Internet and give a high-level description of the packet processing infrastructure

and networking application requirements. Based on these high-level observations,

the fundamental ideas of the FlexPath NP architecture are mentioned and the

introduction is concluded with the organization of the subsequent chapters of the

dissertation.

Classical computer networks found in enterprises and universities, as home and

office networks in residential areas and the server clusters operated by Internet

service and content providers made up the Internet during the 1990s. Around the

year 2000, an integration of the classical telephony networks (public switched

telephone network, PSTN) and data networks took place. The introduction of Voice-

over-IP (VoIP) protocols allowed transferring voice connections over asynchronous

packet switched networks that were originally developed for data communication.

Otherwise, backbones in the data networks started using Sonet/SDH technology

with their high transmission bandwidth, which was originally developed to transmit

high-order multiplexed voice signals in a strictly synchronous network. Around the

same time, data services began to be offered by the mobile telephone providers

(e.g. with GSM/GPRS and evolution towards 3G technologies found in UMTS),

linking their networks into a unified, globally meshed communication network

supporting both voice and data transmission.

The more widespread availability of the Internet to the general public and the

increasing access speeds offered as customers were able to migrate from dialup

connections (14 - 56 kbit/s) to DSL and cable modems (1 - 30 Mbit/s) also led to the

introduction of new services, most importantly e-Commerce and multimedia. Those

new applications, in addition to "plain" web traffic like http and email, required

widespread use of cryptography for confidential data and a differentiation and

prioritization of real-time from non-real time user applications. In a subsequent step,

peer-to-peer applications, where individual users share content among each other

(in contrast to the classical client-server model, where content is kept in a

centralized place) caused an additional shift in communication patterns and

increased the total traffic amounts in the Internet.

As a result of the above mentioned trends and developments, an exponential growth

in Internet backbone transmission bandwidth with annual growth rates between

Chapter 1 - Introduction

16

60% and 100% on average could be observed throughout the last decade [1]. This

growth imposes significant pressure to improve the performance of the network

architecture.

The networks making up the Internet are organized in a hierarchical fashion (see

also Figure 1) with routers aggregating the traffic to and from smaller sub-networks

and forwarding them towards the destination networks via peering or backbone

links in the WAN core. Please note that the figure shows only the basic structure of

the network aggregation and interconnection structure, the physical instances are

not corresponding to an actual architecture, as such information is not publicly

available from the actual ISPs.

Residential

Customers

B-RAS

Infineon

Network

WAN-Core

ISP B Backbone

ISP A Backbone

MAN Munich

MAN Augsburg

Munich

Stuttgart
Leipzig

Düsseldorf

HamburgFrankfurt

Eindhoven

Amsterdam

Den Haag

Frankfurt

London

New York

San FranciscoTokyo

Sydney

Paris

Hong Kong

Chicago

Rotterdam

Schwabing

Altstadt

Sendling

Laim

Solln

Giesing

BMW

Network

TUM

Weihenstephan

LMU Munich

TUM

Garching

TUM

Munich

LRZ Net

Residential

Customers

Bogenhausen

DSLAM

DSLAM

DSLAM

Residential

Customers

Residential

Customers

B-RAS

B-RAS
B-RAS

Local Area Networks / Enterprise Networks

Access Networks

Metropolitan Area Networks

Aggregation & Delivery Networks

Wide Area Networks /

Regional, National, Global Scope

Core Network (Provider Core & Internet Core)

transmission technologies:

- TDM backhaul (ATM over E1, STM-1, ...)

- classical Ethernet (100 Mbit, 1 Gbit, 10

Gbit)

- RF backhaul, esp. for mobile networks

typically star topology

important functions:

- user authentication, access control (e.g.

B-RAS)

- initial traffic aggregation (e.g. DSLAM)

transmission technologies:

- medium speed TDM backhaul (STM-4/16, ...)

- Carrier Ethernet (1 Gbit, 10 Gbit, PBB)

typically ring topology

local traffic is switched/forwarded; other traffic

routed towards backbone network(s)

traffic at network border need to be filtered/

metered in order to comply with inter-ISP SLAs

transmission technologies:

- high speed optical transmission (STM-64/256, ...)

- MPLS

- Carrier Ethernet (10 Gbit, 100 Gbit, PBB-TE)

typically (partial) mesh topology

routers at the edge of the core determine best

suitable core exit and forward packets on

predefined (switched) paths through the backbone;

core routers usually only switch the traffic (Sonet/

SDH OXC, PBB-TE switching)

Internet Exchange Point

Border Router

Peering Link

Edge Router

Figure 1: Hierarchical Structure of the Internet

Residential customers and companies/universities connect to the Internet through

the ISPs' points-of-presence, usually entering an aggregation network that

combines the traffic originating from the same geographical region. Of course, these

networks allow switching traffic directly between locally close neighbors, while

Chapter 1 - Introduction

 17

networks lying further apart (this notion of distance applies also to networks

attached to a different ISP operating in the same geographical region!) have to be

reached through the wide area network. Although there exist some peering links

between individual ISPs on a more regional level, the global connectivity is generally

achieved through Internet Exchange Points [4], where so-called Tier 1 ISPs cross-

connect their locally attached networks with each other.

Special gateway routers are found at the borders of the individual networks, so that

the different providers have the ability to perform traffic monitoring and policing, and

are able to translate traffic to a different protocol stack, which may be used in the

adjacent network. The enforcement of inter-provider service level agreements (SLAs)

at the network borders and eventual protocol conversions require a flexible router

infrastructure with lots of general-purpose computing power. The same also holds

true for the access equipment, where traffic first enters a provider's network and has

to be inspected in order to achieve billing and accounting purposes as well as

filtering functions, in order to block malicious behavior (B-RAS devices in Figure 1).

Traffic inside a provider's own network, which has to be forwarded between several

internal switches or routers to reach the final endpoint of the network, is typically

only forwarded without further packet inspection. In the Internet core, this is often

achieved by using MPLS (multi-protocol label switching), which assigns pre-

configured, locally unique labels for each of the predefined connections based on

the initial routing information; and routers within the MPLS network perform a simple

switching only on the MPLS labels rather than performing the traditional switching or

routing function. As the MPLS labels are determined at the edges of an MPLS

network by inspecting the IP destination addresses and QoS (quality of service)

parameters of the packet, this kind of forwarding is often referred to as layer 2.5

forwarding [5]. In recent years, development of "carrier-grade" Ethernet technologies

has started a trend among ISPs to simply switch the traffic based on L2 information

rather than performing L3 routing based on the IP addresses in the packet.

As defined in RFC 1812 [2], routers are those functional entities in the network that

perform the forwarding function with the help of routing protocols. As the variety of

application layer protocols has increased dramatically since the early days of the

Internet, and those applications come with greatly differing QoS requirements,

DiffServ [3] has been introduced as a framework for differentiating traffic in the

routers into different service classes and treating them in various different ways.

Some of the necessary functions required to achieve QoS are packet filtering,

metering and policing, and forwarding packets on different priority levels. Such QoS

architectures are not only constrained to the IP protocol suite, but can also be found

in recent Ethernet standards (e.g. VLAN IEEE 802.1Q), ATM and MPLS networks. In

all places, where formerly unrelated networks are coupled together, gateways

assure interoperability of the communication on both sides. In contrast to classical

Chapter 1 - Introduction

18

routing, which is constrained to layer 3 of the OSI protocol stack, gateways may

also work on higher layers up to the application layer (L7).

Figure 2 shows the modular architecture for routers and application gateways

following standards such as AdvancedTCA [6]. The AdvancedTCA specification only

provides standardization for the mechanical and electrical characteristics for rack-

based communication systems (e.g. size of pluggable cards, electrical power

supply, thermal power dissipation and a common backplane wiring scheme). Each

vendor has the freedom to choose from a range of different backplane protocols

and speeds and switch fabric parameters like line card connectivity and redundancy

depending on the application requirements.

Physical View

(ATCA Rack)

B
a

c
k
p

la
n

e

Switch

Fabric

Line Card

PHY MAC
Link

(el. or opt.)

Packet

Processing

Memory

Fabric

Interface

Line Card

PHY MAC
Link

(el. or opt.)

Packet

Processing

Memory

Fabric

Interface

:

Functional View

Backplane

Line C
ard

Switc
h Fabric

Contro
l &

 M
anagement

Figure 2: Typical Router Implementation with ATCA Standard

The actual packet processing takes place in one or several packet processing

circuits on the individual line cards, while both line cards or the processing entities

may be implemented in a half duplex or full duplex operation mode.

Traditionally, there existed high-performance ASIC (application-specific integrated

circuit) solutions for high-speed switching in the telephony backbones. These

solutions yielded a high performance, but as a hardwired function, they provided no

flexibility / adaptability to newly emerging protocols and applications. A change in

any of the transmission protocols comes at the cost of designing a new ASIC that

can then be deployed in an improved line card. On the other hand, first routers in

data networks were comprised of general-purpose PC systems with several network

interface cards that implemented the forwarding functions and routing protocols in

software. New protocols and functions could be easily deployed and tested by

modifying the software, of course at a significantly lower performance level

compared to the highly-optimized ASIC solutions.

With the integration of formerly separated networks and the advent of new

applications and protocols around the year 2000, packet processing had to become

Chapter 1 - Introduction

 19

significantly faster while retaining the flexibility associated with the previous

software implementations. Thus a migration of router technology from a general-

purpose PC system to a custom-made ASIC (as they had been used in the

telephony networks) would not serve the purpose. To address this performance /

flexibility dilemma, network processors (NPs) were proposed to bridge the gap

between slow but flexible general-purpose processors and high-performance ASIC

implementations with their lack of flexibility and high development costs.

In general, NPs rely on a combination of application-specific instruction set

processors (ASIP) and hardware accelerators. Hardware acceleration is used for

networking-specific tasks that are common across many applications or where it is

mandated by the computational complexity (e.g. cryptography). In addition, many

NP architectures implement line / MAC / switch fabric interfaces on-chip and

contain a set of memory controllers and connections to dedicated, off-chip

hardware accelerators via standardized interfaces. This integration simplifies the

board design of the router linecards and improves the overall system reliability,

which is also an important aspect in the telecommunication industry. However, it is

important to realize that no standard architecture has been found yet. Every NP

vendor offers its specific solution, and designs from different suppliers look quite

differently for NPs targeting different market segments and networking applications.

Based on an analysis of the first generation of network processors, the FlexPath NP

architecture is proposed [7] that improves the performance of the NP by

– enhancing the software-programmable capabilities of the NP with hardware

offload in order to relieve the processors from simple, recurring tasks faced

across many networking applications and

– providing a variety of run-time reconfigurable processing paths (i.e. functional unit

traversal sequences) in the data plane of the device that are optimized for the

requirements of different networking applications.

The fundamental idea behind the FlexPath NP architecture is to dynamically adapt

the processing paths for the arriving packets so that the requirements of the current

traffic load can be best met by the available resources in the device. A special

hardware unit called Path Dispatcher performs a real-time classification of the

incoming traffic into a set of application classes, for which optimized processing

paths are provisioned in the FlexPath NP architecture. These processing paths

include traditional programmable processor resources, arbitrary combinations of

hardware offload units and software processors and a dedicated hardware-only

forwarding path ("AutoRoute") for simple switching / forwarding functions. The

classification function can be achieved by the heterogeneous decision graph

algorithm (HDGA), which is fine-tuned to the constraints of on-chip real-time packet

Chapter 1 - Introduction

20

classification at multi-Gigabit/s packet rates. In contrast to most state-of-the-art

classification techniques, which operate on five or less different header fields, HDGA

scales for rules bases with up to 20 dimensions. The architectural support for

assigning the packets to different processing paths can inherently be used to

address the load balancing problem among several parallel processing instances.

This thesis presents a combination of packet spraying and hash-based load

balancing (S&H) as a novel load balancing strategy, which achieves a high

processor utilization and system throughput by taking into account the different

characteristics and requirements of various networking applications.

The remainder of the dissertation is organized in the following way:

– Chapter 2 covers the complete state-of-the-art relevant to the individual

contributions of this thesis, starting with existing commercial network processors

and academic approaches in the NP field (section 2.1). The NP state-of-the-art is

complemented by a survey of currently important and evolving networking

protocols (section 2.2). Section 2.3 summarizes previous work in the field of

packet classification techniques as a base for the derivation of HDGA. Finally,

existing load balancing strategies for NPs are presented in section 2.4.

– Chapter 3 presents the FlexPath NP concept with its specific architectural

modules based on an analysis of existing networking applications and NP

architectures. The claims made during the presentation of the architectural

concept are further supported by system-level performance simulation results,

which focus on the potential of performance improvements that the hardware-

offload aspects in a FlexPath NP offer compared to a traditional processor-centric

NP architecture.

– Chapter 4 focuses on the Path Dispatcher unit, which performs the real-time

packet classification task in the FlexPath NP system. The elaboration comprises

the concept of HDGA, functional simulation results and finding an optimized

architecture for efficient hardware implementation. The chapter is concluded with

synthesis results for the Path Dispatcher unit in an FPGA demonstrator platform.

– Chapter 5 introduces a combination of two different load balancing schemes

(packet spraying and hash lookup, S&H) that exploit optimum performance of the

processor resources in a given FlexPath NP architecture. Functional simulation

results are provided that compare the individual components and the combined

scheme to several techniques of the prior art. The achievable performance

benefits are shown based on realistic Internet backbone traffic traces.

– Chapter 6 presents the implemented components and system setup of a

combined FlexPath NP / SmartMem demonstrator on a Xilinx Virtex-4 FPGA

development board. Selected measurement results are presented that illustrate

Chapter 1 - Introduction

 21

the performance of the FlexPath NP approach and prove the validity of the

assumptions made during the concept development and simulations.

– Finally, chapter 7 summarizes the scientific contributions of this dissertation to the

state of the art and presents an outlook to possible future research directions

based on the lessons learned during the FlexPath NP project.

The work presented in this dissertation originates from the FlexPath NP project,

which was associated with the German research foundation's priority program

"Reconfigurable Computing" (SPP 1148) during the time frame 2005 - 2009. Two

dissertations cover the entire work performed in the FlexPath project, with the

current thesis focusing mainly on the ingress data path pipeline elements and load

balancing strategies and the other dissertation by Michael Meitinger ([107])

discussing the egress data path pipeline elements. For the demonstration purposes

in both theses, we implemented a common demonstrator of a FlexPath NP on an

FPGA development platform that also includes the SmartMem DMA engine, which

was developed in a parallel project by our colleague Daniel Llorente, and is covered

in his dissertation ([108]).

Chapter 1 - Introduction

22

Chapter 2 - State of the Art

 23

2. State of the Art

The following chapter illustrates the state of the art for the work covered in this

thesis, and is divided into three main topics:

– The first topic (section 2.1) focuses on the evolution of network processors during

the past ten years and presents current implementation solutions and related

academic approaches. In addition, the current application mix in the Internet is

characterized (section 2.2) from which conclusions about the requirements for

future networking compute architectures are drawn. The analysis of these two

fields triggered the proposal of the FlexPath NP architecture, which is derived in

detail in chapter 3.

– The second topic (section 2.3) focuses on existing approaches in packet

classification. This field is relevant to the major contribution of this Dissertation,

the HDGA packet classification scheme implemented in the Path Dispatcher,

which is presented in chapter 4.

– The state of the art survey is concluded by discussing approaches to load

balancing in network processors (section 2.4), which is an important function in

multi-processor systems in general. Load balancing in the context of FlexPath NP

is addressed in chapter 5.

Chapter 2 - State of the Art

24

Chapter 2 - State of the Art

 25

2.1. Network Processors

2.1.1. Commercial Network Processor Architectures

2.1.1.1. Commercial NPs Prior to the FlexPath NP Proposal

Although the survey on NPs undertaken by Shah [9] dates back to the year 2001,

this document provides an excellent starting point for understanding the evolution of

the network processor field. Therefore, a selection of NPs from that period should

be presented first in order to show the evolution of these devices and draw

conclusions about the architectural trends that have taken place in the market ever

since.

The Agere Payload Plus NP [10] is a multi-chip solution that consists of a Fast

Pattern Processor (FPP) and Routing Switch Processor (RSP) in the data path and

the Agere System Interface (ASI) for control plane functions and communications

with a management host. The FPP receives the packets from the link, parses the

packet and hands it over to the RSP chip. The FPP consists of a multi-threaded,

pipelined processor and hardware assists for pattern matching and checksum /

CRC calculations. The RSP chip receives the packets from the FPP along with

certain classification information and performs traffic management, traffic shaping

and queuing functions before performing final modifications on the packet and

sending them out towards the switch fabric. The functions are implemented with

three dedicated VLIW (very long instruction word) processors: traffic management

compute engine, traffic shaper compute engine and stream editor compute engine.

In addition to the VLIW processors, the chip provides interfaces to external SDRAM

to store the packets while they are being queued.

The MSP5000 processor from Brecis Communications [11] addresses converged

voice and data communications linking enterprise sites to the network edge. The

task is achieved by two DSP (digital signal processor) processors for voice and

packet processing while a MIPS RISC (reduced instruction set computer) core takes

over control plane functions. The processors communicate with a special QoS-

aware system interconnect (Multi-Service Bus Architecture) with a peak data rate of

3.2 Gbit/s. The processors are complemented on-chip with a set of hardware

accelerators for cryptographic functions and CRC (cyclic redundancy check)

calculation.

IBM's Power NP [12] is a representative of a massively parallel processor cluster.

Apart from a single general-purpose PowerPC that is used for control plane

processing, it features an embedded processor complex with 16 programmable

protocol processors. In addition to the 16 cores, there are seven specialized

hardware accelerators for DMA (direct memory access), checksum calculation,

traffic shaping and policing and inter-processor communication.

Chapter 2 - State of the Art

26

The PXF NP from Cisco [13] features 16 processors arranged in eight parallel

pipelines. The pipeline depth may be extended by chaining several PXF chips in a

router system. By forcing the packet processing task into a pipeline structure, with

every processor performing only a specific sub-task, a deterministic behavior of the

NP with respect to packet throughput may be achieved.

Intel's IXP 1200 NP [14] also follows the processor cluster architecture found in the

IBM Power NP. It provides six multi-threaded microengines that support a total of

24 tasks in the system. The instruction set of the microengines is specifically

optimized for packet processing and they have to be programmed in their own

assembly language in order to achieve maximum performance. The NP comes with

integrated hardware support for hashing and queue management and features a

StrongARM RISC processor for control and management purposes.

The X40 NP from Xelerated [15] targets the high speed end of the NP spectrum. It

consists of a single pipeline with 10 stages; each stage consists of a classification

and action stage. The action stage is made up of a packet instruction set computer

(PISC), which is a processor with a specialized ISA (instruction set architecture) for

packet processing. In addition, the chip allows accessing external memory and

CAM (content addressable memory) from all pipeline stages. During operation, every

stage in the pipeline works on a different packet and completes processing within a

single clock cycle, thus achieving very high packet rates.

2.1.1.2. Evolution of the Commercial NP Field after the FlexPath NP Proposal

Following the burst of the New Economy bubble, a wave of consolidation started in

the NP business. Some vendors went out of business, others were acquired by

larger companies or product lines were spun off to new companies. Successful

product lines, e.g. Intel's IXP product line, evolved over several generations. More

processor cores were added to the system, interconnect structures upgraded,

memory and I/O interfaces adapted for newer standards [16] and the devices were

scaled down to new CMOS process generations. Starting with the IXP2400 series of

NPs, the microengines were equipped with special "next-neighbor" interconnect

registers. They allow very efficient passing of data among neighboring

microengines, thus enabling a pipelined programming model in addition to the

parallel processor cluster model of the IXP1200 series. Moreover, a further

differentiation for the various targeted market segments could be observed. In 2005,

processors from the second generation existed in a range of two to 16

microengines, clock frequencies between 600 MHz and 1.5 GHz and target line

rates between 1 Gbit/s and 10 Gbit/s. The latest model (IXP2855, [17]) also features

two hardware crypto cores that enable IPsec processing at up to 10 Gbit/s.

However, in 2007 Intel sold its NP line to Netronome, which will further develop NP

products evolving from the IXP28xx.

Chapter 2 - State of the Art

 27

In January 2006, SafeNet announced the SafeXcel IP inline security engine [18] as a

security application co-processor that works as a full-fledged offload for security

application handling from general-purpose compute architectures in network

processor SoC designs. The security engine can be used either as a traditional co-

processor, relieving the general-purpose parts of the NP from the compute-intensive

cryptographic algorithms, but it can also be integrated as an autonomously

operating processor in "bump in the stack" (i.e. packets are en-/decrypted before

reaching the processor, so that the processor sees only plaintext packets) or "bump

in the wire" (i.e. packets are processed without even being touched by the

processor) use cases. Especially the last mentioned "bump in the wire" use case is

based on essentially the same idea as the proposed AutoRoute feature in a FlexPath

NP, which will be described in detail in chapter 3.2. The architecture appears to be

commercially successful, as the device is still actively marketed in 2009 [19]. Figure

3 shows the architecture of the SafeXcel-IP-196 block as of 2009.

R
X

 E
th

e
rn

e
t

M
A

C

In
p

u
t A

rb
ite

r

In
p

u
t

C
la

s
s

ific
a

tio
n

In
lin

e
 IP

s
e

c

P
a

c
k

e
t

T
ra

n
s

fo
rm

E
n

g
in

e

O
u

tp
u

t

C
la

s
s

ific
a

tio
n

P
o

s
t-

P
ro

c
e

s
s

o
r

T
X

 E
th

e
rn

e
t

M
A

C

Administration Data Manager

System Bus Interface (Master/Slave for either AMBA or PLB)

Interrupt Controller

Control Path

Data Path

SafeXcel-IP-196

Figure 3: SafeXcel-IP-196 IP Flow-Through Packet Engine

The nP7300 from AMCC [20] follows the run-to-completion operation model (Figure

4a) with three nPcore processors, each of which supports 24 tasks. From the point

of view of the NP programmer, the system performs like a 72 core processor, while

the packet processing task for each packet is executed in a single thread.

Consequently, there is no multi-processor overhead necessary during software

development, i.e. the programmer does not need to consider splitting the

application into several chunks, which might be distributed among the processors

and organize data communication and synchronization between the cores. The data

plane processor complex is enhanced with a Channel Service Module (CSM) that

provides an autonomous DMA function to store and retrieve packets from the I/O

interfaces without processor intervention. The chip also includes a dedicated traffic

manager for traffic shaping, policing and queuing and a separate hashing unit.

Memory and external co-processors (e.g. TCAM memories) can be accessed via

standardized interfaces. The nP7300 has no dedicated control plane processor on

chip, but can be connected to a host via 10/100/1000 Ethernet and the data plane is

targeted for 10 Gbit/s half-duplex operation.

Chapter 2 - State of the Art

28

Netronome's NFP3200 NP [21], which is the first successor of Intel's IXP28xx

product line, now features up to 40 microengines for data plane processing with

local instruction stores optimized for run-to-completion or pool-of-threads

programming models. In addition, an ARM11 embedded RISC core is used for IPsec

key exchange algorithms, routing table updates and system management functions.

The NP also comes with a hardware cryptography module that supports up to 10

Gbps, while the 40 microengines allow packet processing at 30 Mpps or 20 Gbps

with 2,000 instructions per packet.

In 2008 Cisco released information about its own Quantum Flow Processor [24],

which is initially a two-chip solution with one chip for the processors and a second

chip for traffic management. The processing chip consists of 40 Tensilica RISC

processor cores [25] that are C-language programmable and provide four threads

per core at 900 MHz to 1.2 GHz. The packets arriving from either the line interfaces

or the switching fabric are first handled by the traffic manager chip, which also

provides access to a centralized memory and includes all system I/O interfaces.

When the packets are ready for processing, they are dispatched to one of the 160

threads in the processor engine chip, which are connected with the rest of the

system via a crossbar switch architecture. The initial two chip solution will be used

in Cisco's ASR 1000 series aggregation switch routers with an internal packet

processing capability of 5 to 100 Gbps. There are plans to integrate the system into

a single chip design and increase the number of processor cores in the packet

processor engine in future versions of the NP.

Another current design that adheres to the parallel processor cluster architecture is

the Octeon II processor family from Cavium Networks [26], of which first processors

are announced to ship in the fourth quarter of 2009. The NP family will feature a new

generation of 64bit MIPS cores in the data plane. There will be devices with 1 to 32

cores, each of them running between 800 MHz and 1.5 GHz. There are also up to 75

hardware accelerators available in the system, which are connected to the cores via

an eight Tbps Hyperconnect crossbar switch. The first NP generation targets the 40

Gbps market but is claimed to provide I/O capabilities for up to 100 Gbps.

Xelerated still pursues the strict pipeline approach (Figure 4b in section 2.1.3) with

its X11 NP [22] released in 2008. In contrast to the X40 [15], the X11 features five

blocks of 32 pipelined PISC processors, thus 160 processors in total. External

memories and hardware accelerators may be accessed only from distinct Engine

Access Points (EAP) at the beginning of each of the five pipeline blocks. The EAP

includes packet buffers to cope with the latency associated with the individual

accelerators or memory accesses. With a core frequency of 240 MHz the X11 is able

to process packets at up to 24 Gbps. Xelerated has also announced a new

generation of network processors (HX family) that addresses the evolving 100 Gbps

Ethernet market. In comparison to the X11 NPs, the number of processors in the

Chapter 2 - State of the Art

 29

programmable pipeline is increased to 512 and the devices feature an integrated

traffic manager and switch fabric [23]. It is characterized by Xelerated with the term

"linecard on a chip", due to its high level of integration that needs only external

DRAM, TCAM (NSE) and PHYs as additional off-chip elements.

2.1.2. Academic Network Processor Projects

2.1.2.1. Academic NP Investigations Prior to the FlexPath NP Proposal

The Field-Programmable Port Extender (FPX) developed at Washington University in

St. Louis [27] in 2001, provides an FPGA-based reconfigurable platform for network

processing for ATM. The platform comprises an extension board with two FPGAs,

which can be plugged in between the line card and switching backplane interfaces

of an ATM-based Gigabit switch (WUGS). The first FPGA, which comprises a

simple, reconfigurable switching fabric with a small control memory allows to route

incoming traffic on a flow-level granularity (i.e. ATM VPI/VCI numbers) between the

line card interfaces, switching backplane and two dynamically reconfigurable slots in

the second FPGA. In addition, by sending special control cells to this FPGA,

bitstreams for the second FPGA can be transmitted over the network, allowing a

subsequent (partial) reconfiguration of the other FPGA. The second FPGA contains

two reconfigurable slots for the actual user-defined packet processing functions and

has interfaces to external SRAM and SDRAM. The FPX platform has been used to

demonstrate IP packet routing, per-flow queuing and flow control and application-

level content inspection and modification. By making use of reconfigurable FPGA

resources in the network processing device, the benefits of run-time modification of

the packet processing function can be combined with the hardware-like

performance of the FPGA logic.

In 2002, Troxel et.al. from the University of Florida at Gainesville [28] propose a

network processor architecture that allows to dynamically reconfigure the pipeline

depth of microengines in an Intel IXP1200-like processor configuration during

system runtime in order to improve the overall system performance given

fluctuations in the arriving traffic pattern. The authors present only simulation results

of the proposed system. Assuming that the networking application can be executed

on microengine pipelines of various depths (i.e. the task can be partitioned to run on

one, two or three engines with different resulting processing times per processor),

they can exploit a performance gain by changing the pipeline depths assigned to

different traffic types during the system runtime. They present an application

scenario from a defense application with three different packet types, so that a

generalization to Internet traffic is not straightforward.

The PRO3 network processor proposed by Papaefstathiou et.al. from Ellemedia and

the Technical University of Crete [29] in 2004 introduces dedicated hardware

support for DMA and queuing operations in the NP SoC and enhances two

Chapter 2 - State of the Art

30

programmable RISC cores with two dedicated hardware accelerators. The field

extraction unit (FEX), which is a firmware-configurable hardware assist, parses the

incoming packet and may write important header fields into the register file of the

processor. The processor can then execute the actual high-level part of the

networking application and the field modification unit (FMO) is available for writing

back results from the RISC core registers into the packet, which may include bit-

and byte-level operations that are hard to implement efficiently in the general-

purpose RISC core. The authors show, that a PRO3 system with two FEX-RISC-

FMO pipelines achieves a similar performance for benchmark TCP and UDP

applications in comparison to the Intel IXP2400 with 6 microengines. In addition,

they could demonstrate that the hardware-based queue management in the PRO3 is

significantly more efficient than the standard software-based solution in the IXP,

such that both systems could deliver roughly the same performance, while the

PRO3 chip consumes only about one fifth of the IXP's die area.

In 2005, Ravindran et.al. from the University of California at Berkeley [30]

investigated the forwarding performance of a network processor architecture based

on parallel Xilinx Microblaze processor pipelines. After optimizing the partitioning of

the IPv4 forwarding application onto a three-stage pipeline, a total system

throughput of 1.8 Gbps can be achieved with a total of 12 Microblaze processors in

four parallel pipelines. This value is compared to the forwarding performance of an

Intel IXP2800, which achieves 10 Gbps with its 16 optimized microengines. After

normalizing the results to chip area, the authors show that the FPGA-based solution

performs only a factor of 2.6 worse than the commercial NP. The claimed benefit of

the FPGA solution is that by using soft processor IP with the provided toolchain and

standard off-the shelf FPGA products is an attractive choice for niche application

domains, where the cost of starting a full ASIC design may be too high in

comparison to the expected number of units to sell.

2.1.2.2. Academic NP Investigations after the FlexPath NP Proposal

DynaCORE ([31], chapter 16, pp. 335-354 and [90]), which was developed at the

University of Lübeck in 2006, is a dynamically reconfigurable co-processor for

compute-intensive payload manipulations in network processor systems. The

FPGA-based architecture combines the near-hardware performance of an FPGA

implementation with the dynamic partial reconfiguration capabilities offered by Xilinx

FPGAs. The static part of the DynaCORE provides system I/O interfaces for

communication with the off-chip NP (e.g. a commercial NP or our FlexPath NP

demonstrator system (see [91])) and a controller for system monitoring and

reconfiguration management. As requests arrive from the attached NP to execute

cryptographic algorithms or pattern matching applications on the arriving packets,

the reconfiguration controller insures that a sufficient amount of hardware

accelerators is dynamically configured into the reconfigurable slices of the system

Chapter 2 - State of the Art

 31

and forwards the incoming packets to the respective unit. Correct routing of the

packets and glitch-free operation of the DynaCORE during partial reconfigurations is

achieved by a special network-on-chip architecture called CoNoChi.

Another run-time reconfigurable NP architecture was presented by Kachris et.al. at

the University of Delft in 2006 ([32]). They regard an NP architecture based on a

Xilinx FPGA with either the Microblaze soft core or PowerPC hard core processors

as central processing elements. These programmable resources may be assisted

with hardware accelerators for Checksum calculations, DES encryption or IDCT

transcoding as representative examples for plain IP forwarding, IPsec or voice/video

application processing. The respective functionality may however also be achieved

by the processors (at a lower performance level). Now, Kachris assumes different

shares for the individual networking applications and computes an optimum

combination of accelerators (type and quantity) in order to maximize throughput.

During system runtime, the current load on the network interfaces is monitored and

the hardware accelerators are dynamically reconfigured in order to yield maximum

utilization of the available soft- and hardware instances.

The GigaNetIC architecture [33] developed by Niemann et.al. at the University of

Paderborn in 2007 proposes a massively parallel multi-processor system for

networking applications. Clusters consisting of four embedded RISC processors

with local memories and hardware accelerators are interconnected using a 2D-mesh

network-on-chip. Peripherals and hardware assists with system-wide relevance (e.g.

Ethernet cores, IPsec accelerators, etc.) may be attached directly to the NoC and

are thus universally reachable and can be accessed as a shared resource. In this

way, the proposed architecture allows finding balanced solutions between locally

shared and globally shared resources. The authors claim C-language

programmability for the embedded processors and an architecture that may be

programmed either as a functional pipeline or as run-to-completion cluster.

Benchmarking results are presented for a simple TCP/UDP integrity check and

forwarding application. Results from an FPGA-prototype implementation with only

two processor clusters (total of eight cores) and two NoC switches are also

extrapolated for an ASIC implementation with 20 clusters (total of 80 cores). The

ASIC implementation would consume the same die area as current state-of-the-art

desktop processors. The GigaNetIC is shown to have a forwarding performance

which is roughly one order of magnitude greater than that of the general-purpose

CPU, but it consumes about two orders of magnitude less energy. However, the

authors give no comparisons to commercial NP implementations.

In 2006, researchers from Hitachi present investigations on a cache-based network

processor architecture ([34]). A conventional NP cluster with parallel/pipelined

processors is augmented with a hardware pipeline that provides pre- and post-

processing capabilities and the cache system. The first packet of each packet

Chapter 2 - State of the Art

32

stream/burst is forwarded to the processor cluster, where the traditional forwarding

function is implemented in software. After processing, all relevant information (i.e.

flow identification and all types of packet manipulations / data) are recorded in the

cache system. When a subsequent packet of the same flow arrives, this information

is retrieved from the cache and may be applied on the packet in the post-processing

stage. Measurement results performed on an FPGA prototype with real world

Internet traffic revealed, that between 10% and 40% of the total processor cluster

performance is sufficient to forward 100% of incoming traffic. In turn, the authors

argue that a traditional 10 Gbps to 40 Gbps NP device augmented with their cache

implementation would be able to process a 100 Gbps link in a lossless fashion.

Such an implementation would in turn only consume about 45% of the power

needed in comparison to a conventional NP that is scaled up to 100 Gbps

performance.

In 2007, Li et.al. from the National University of Defense Technology in China

proposed the DynaNP architecture ([35]). A DynaNP consists of a set of processors

that are connected over a central interconnect to shared memory and ingress /

egress management engines (IME, EME), which perform a DMA function to and from

the shared buffer and initial packet pre-classification. The networking application is

partitioned into tasks, which are subsequently assigned to run on distinct

processors. Depending on the type of arriving packet, processing may be achieved

by executing a variable number of tasks. The initial packet classification in the IME

determines the first task to be executed for the incoming packet and subsequently

assigns it to the queue of the respective processor. After processing each task, the

processor decides whether further steps are necessary (sending it on to another

processor) or back to the EME for retransmission over the link or fabric interfaces.

As an initial partitioning and mapping of the total task set among the available

processors will not be optimally balanced, and the utilization of individual

processors is also expected to change with variable traffic loads, the authors

propose a dynamic task migration algorithm, with which they essentially perform

load balancing of the tasks among the processor cluster. The publication presents

system-level simulation results of the proposed DynaNP architecture. However, the

elaboration lacks a prototypic implementation and the authors do not comment

about the overhead associated with frequent task migrations and how to insure

packet ordering when reconfiguring the processing paths.

Chapter 2 - State of the Art

 33

2.1.3. Conclusions

The characteristics of the first and second generation of NPs form the basis, from

which the FlexPath NP architecture [7] was initially defined:

– A number of different companies have developed NPs for different market

segments with quite different architectural approaches and processing resources.

– All regarded NPs combine programmable resources with hardware accelerators

for compute-intensive and networking-specific tasks. Most NPs also include line

and fabric interfaces and memory controllers for off-chip packet storage. Control

Plane functions, which are not performance-critical are usually mapped to a

general-purpose RISC processor. For the packet processing task, RISC

processors, some of them with application specific instruction set extensions,

DSPs, or traditional ASIP designs are used.

– While there are also some multi-chip solutions, most designs favor integration into

a single chip design.

– Due to the performance requirements of network processing, multi-threading and

parallel processing are widely used. Multi-threading allows hiding long memory or

hardware accelerator access latencies, as the programmable core can continue

working on other packets being processed in different threads. As far as operation

models are concerned, processors may be used in a symmetric multi-processor

cluster (run-to-completion architecture), a dedicated processor pipeline, or a

combination of both (parallel pipelines). Figure 4 illustrates these three

architectural approaches in an abstracted form.

Set of Data Plane Processor Pipelines

Data Plane Processor Pipeline

Data Plane Processor Cluster

Interconnect

Off-chip

Mem Ctrl

I/O

(MAC)

On-chip

Mem

Proc
HW

Accel

a) Parallel Processor Cluster Architecture (Run-to-Completion),

 e.g. [11], [12], [14], [20], [21], [24], [26]

I/O

(MAC)
Proc ...

HW

Accel

b) Simple Processor Pipeline Architecture

 e.g. [10], [15], [17], [22], [23]

Proc Proc
I/O

(Fabric)

I/O

(Fabric)

Lookup

Proc

On-chip

Mem

On-chip

Mem

On-chip

Mem

Control

Plane

Control

Plane

I/O

(MAC)

Proc ...

c) Parallel Processor Pipelines Architecture

 e.g. [13], [17]

Proc Proc

I/O

(Fabric)

On-chip

Mem

Control

Plane

Proc ...Proc Proc

Interconnect

HW

Accel

Off-chip

Mem Ctrl

Figure 4: Fundamental NP Architectures: run-to-completion parallel processor cluster

(a), simple processor pipeline (b), and parallel processor pipelines (c)

Chapter 2 - State of the Art

34

More recent developments in the commercial NP field can later be used to analyze

the industrial relevance of the proposals made in the FlexPath NP approach. The

following conclusions about commercial network processor architectures may be

drawn with respect to the subsequent features:

– Programmability: Programming network processors is still an important

challenge for some devices. As far as the data plane processors consist of cores

with packet processing specific instruction sets, no standard compiler tool chain

may be available. Consequently, those cores have to be programmed in their own

assembly language, which can become quite awkward. Big vendors, such as Intel

have therefore provided software libraries that include optimized code for a big

variety of commonly needed protocols. However, the possibility of simply and

efficiently upgrading an NP-based system in the field with new software patches

for new protocols is somewhat limited. In contrast, some vendors resort to

standard embedded cores that are programmable in C, like Cisco's QFP or the

MIPS core used in the Cavium Octeon II. As integration density has improved

largely, it is now possible to trade off the comfort of C programming on a few

more standard embedded RISC cores versus fewer processors featuring an

application-optimized instruction set. Another programmability aspect can be

found when comparing the run-to-completion solutions with the pipelined

architectures. Pipelined architectures have the inherent advantage of a

deterministic behavior, and thus a fixed maximum packet rate. The fixed packet

rate is helpful when a manufacturer guarantees operation of his device for a given

speed rate, as a worst case scenario with a continuous stream of shortest size

packets leads to a fixed packet rate for any given line speed. On the other hand,

this guarantee comes at the price of having to partition the application into chunks

that can be executed within the individual pipeline stages in the mandated time.

Also, when there are only limited access points to external accelerators and

memories, this restricts the freedom of software programmable solutions.

– Interconnect: As NP manufacturers have scaled up the number of processor

cores in run-to-completion architectures, traditional on-chip buses have become

a system bottleneck. Therefore, a migration to more sophisticated structures such

as crossbar switches were necessary in order to fully exploit the processing

performance of the larger processor clusters. In contrast, pipelined architectures

may be implemented easily, as they require only simple point-to-point

connections between neighboring processing elements. In addition to the

guaranteed throughput that pipelined architectures can offer, this explains, why

NPs targeting the highest speed market segment still adhere to the pipeline

model.

– Processors: Current packet processors are predominantly RISC processors,

some of them with a customized instruction set. Other processor types such as

Chapter 2 - State of the Art

 35

the MSP5000 from Brecis Communications [11] with DSPs or VLIW processors

(Agere, [10]) are no longer found in current designs. Specific high-performance

tasks are still solved by means of hardware support, and not mapped to software

programmable units. However, there is a strong trend towards multi- and even

manycore processors, and multi-threading is used extensively in order to hide

accelerator and memory access latencies. As packet processing usually treats the

packets as independent units, packet processing can be far easier parallelized

than traditional general-purpose compute applications. The advances made in

modern CMOS process technologies helped increase the clock frequencies of the

processors from a few hundred MHz in the early NP designs to well above the

GHz margin.

– Hardware Acceleration: For compute-intensive tasks in packet processing, such

as CRC checksum calculations or IPsec cryptographic algorithms, only hardwired

logic is able to deliver real-time performance for current link rates. But also other

fixed and standard tasks such as queuing and DMA that have to be performed for

every packet are often offloaded to dedicated hardware units. In total, one can

observe that both the variety and number of instantiated accelerators has been

increased in parallel with the number of processor cores and the cumulated line

rates on current router blades.

– Integration: The shrinking process technologies not only allow scaling chips

towards containing even more processor cores and dedicated hardware units.

Integrating as much functions as possible into a single chip design also helps to

significantly reduce design complexity and cost and it increases reliability.

Complex and expensive interconnects across printed circuit boards can be saved,

if it is possible to integrate the entire processing chain from the MAC interfaces

and the actual processor complex towards the switch fabric interface and

memory controllers into a single chip. These single chip NPs are currently

standard, except for the most processing intensive solutions for the highest

possible speed grades (e.g. Cisco's ASR 1000 router, which provides deep

packet processing performance in the multi-Gigabit domain).

– Specialization: While initial NP design proposals tried to address the problem of

network processing with a full breadth approach, recent developments show a

strong differentiation of the devices that target individual market segments.

Devices for high-speed switching and routing in backbone networks are typically

addressed with high-performance pipelined processors and hardware support for

lookups, CRC calculations and traffic management. The processor architecture

can be optimized to efficiently execute the functions on Layers 2 to 3 of the OSI

stack, and don't have to provide as much general purpose processing power as

for application layer or deep packet processing. In contrast, the parallel processor

architecture NPs are more ideally suited for edge and access network

Chapter 2 - State of the Art

36

deployments, where the individual line rates may be slower than in the aggregated

network core, but access control, intrusion detection, QoS policing, etc. have to

be performed on the incoming packets. These deep packet processing

applications, which may work on the higher protocol layers or even parts of the

packet payload in addition to the pure L2/L3 forwarding can be better achieved

with a more general-purpose processor and a single-threaded, run-to-completion

processing model. Traditional router deployments in central office environment

are typically implemented using rack-mounted systems with the possibility of

scaling the performance by adding additional line cards or switching fabrics as

needed. In contrast, smaller form factors with the NP as SoC solution and only

few peripherals on a single PCB are available for mobile network base stations or

customer premises equipment. The employed NPs need less processing

performance and come with less cores and lower operating frequency to provide

more power efficient systems.

Regarding academic network processor concepts, ideas from the following research

areas have been investigated by the research community:

– Reconfigurable computing: several projects ([27], [31], [32]) have used the

reconfigurability of FPGA devices in order to adapt an NP during runtime to

changing conditions in the incoming traffic. In addition, by making use of

reconfiguration, the functions implemented in the device may be almost as easily

changed as in a conventional software system, but the performance of FPGA

hardware accelerators is more similar to that of ASICs.

– Hardware offload: The PRO3 project [29] demonstrated the benefits of assisting

general-purpose processors with networking-specific configurable hardware. A

more radical kind of offload is proposed by Hitachi [34], where a full packet

forwarding path is implemented in hardware that is controlled by the contents of

the packet processing cache.

– Interconnect: The GigaNetIC project [33] pointed out an architecture that is well

suited for scaling to much larger numbers of programmable resources. As

commercial manycore NP designs moved away from shared bus architectures

towards crossbar switches and processor pipelines, the GigaNetIC proposes a

network-on-chip (NoC) based design.

Chapter 2 - State of the Art

 37

2.2. Networking Applications

2.2.1. IP Forwarding

The traditional task of routers is forwarding of IP packets towards their final

destination. The associated tasks are defined in RFC 1812 [2] for IP version 4, which

is still the dominant IP version today. After packet reception, the link layer

information of the packet is discarded. Next, the router has to validate the IP header,

which includes checking the IP checksum and the time-to-live field in the packet

header. If the packet is valid, the IP destination address is used together with the

routing table information to determine the output interface onto which the packet

has to be forwarded. The CIDR addressing scheme [36], which is currently used for

IPv4 mandates a longest prefix match of the destination address versus the prefixes

stored in the routing table. Finally, the time-to-live field has to be decremented by at

least one and the IP checksum must be re-calculated. After that a new link layer

header may be appended to the packet and the packet can be placed into the

output queue associated with the determined physical output port. In this best effort

scenario, all IP packets are treated with equal priority, such that no QoS guarantees

will be given by the network.

2.2.2. QoS Mechanisms

With the introduction of multimedia applications over the Internet, the traditional

best effort forwarding model of the Internet has proven to be insufficient. Two

alternative architectures have been proposed to allow service differentiation in the

Internet and give priority to certain packets over others.

In the IntServ model [37] proposed in 1994, hosts or routers can establish virtual

connections with certain associated performance guarantees. If the routers along

the connection have sufficient resources available, the virtual connection is

accepted and packets of this connection are treated separately from the other

traffic. This separation requires some kind of input filtering or access control and

metering whether the traffic does not exceed the predefined service parameters

such as a bandwidth limit. In addition, the router must provide different queues and

a scheduling mechanism that insures proper multiplexing before the output

interfaces. Due to the requirement of establishing virtual connections and having to

classify each incoming packet against the full set of connections, this approach is

not scalable to a large number of users and is therefore only rarely used.

In contrast, the DiffServ architecture [3] proposed in 1998 uses the old type-of-

service field in the IP header as DiffServ codepoint (DSCP) to indicate that a packet

belongs to a certain predefined traffic class. The network operator associates a

certain per-hop-behavior with each DSCP, which may include parameters such as

maximum allowable bandwidth, forwarding and queuing priority, etc. The individual

Chapter 2 - State of the Art

38

packets have to be marked with valid DSCP values either by the end hosts (if they

know about the network operators' traffic classes), or by the border routers sitting at

the edge of the DiffServ network. For the routers within the network there is the big

advantage that no state information has to be maintained. The forwarding function is

simply inspecting the DSCP field when determining the processing priorities or

queuing priorities. Thus, a full classification and policing of the individual packets

only happens once at the network edge. Within the DiffServ network the DSCP value

determines the forwarding behavior, which is typically limited to around ten different

classes [38]. Therefore DiffServ scales far better and may be easier implemented

compared to IntServ. The concept of marking individual packets with short QoS

identifiers has been considered successful enough, so that the same concept is now

also implemented in the most recent carrier grade Ethernet standards (see chapter

2.2.6).

2.2.3. Security Applications

As the Internet evolved from a pure academic research network towards a

ubiquitous communication network, transmission of sensitive information (like trade

secrets, financial information, etc.) caused serious security and privacy concerns. In

order to tackle these challenges, authentication and encryption technologies had to

be provided. The IPsec framework [39], which became initially standardized along

with IPv6 in 1998, provides those services for both IPv6 and IPv4. The IPsec

framework consists of the two data plane protocols encapsulating security payload

(ESP) and authentication header (AH).

The AH protocol only assures that a packet comes from the claimed sender, and

that the packet did not get modified en route to the receiver. This is achieved by

applying cryptographic operations on the header and by calculating a cryptographic

checksum over the payload. However, the payload itself is not encrypted, and can

therefore be read by anyone tapping into the communication path.

The ESP protocol encrypts the payload, i.e. the original content of the packet is no

longer legible for others between the two IPsec endpoints. Standards-conforming

implementations (current RFC from 2005) have to support AES and 3DES algorithms

for encryption of the payloads and HMAC-SHA1 as cryptographic checksum.

IPsec implementations make use of two databases:

– Security Policy Database (SPD): The SPD contains entries of connection

endpoints and the action, which should be applied to packets between those

endpoints. Possible actions are Discard, Bypass (IPsec processing) and Protect

(en- / decrypt). The router effectively has to perform firewall filtering for the entire

traffic, when it matches the incoming packets to the connections listed in the

SPD.

Chapter 2 - State of the Art

 39

– Security Association Database (SAD): The SAD contains the negotiated security

associations (i.e. cryptographic keys, algorithm, etc.) for each (simplex)

connection between two endpoints. It needs to be consulted when the SPD query

results in "Protect" and an actual IPsec operation has to be performed on the

packet.

IPsec can be deployed both in the network devices as well as at hosts (i.e.

computers). If two hosts protect their communication with IPsec protocols, the

routers in the network simply forward those packets, so there are no extra

requirements for the NPs in those systems. The more interesting case for the

network infrastructure happens, when IPsec protocols are used to establish a

secure connection between two sites that are connected over the public Internet

(Figure 5). Here, the hosts within the corporate networks (NW1 and NW2) can trust

each other and don't have to encrypt their messages. However, as people from one

site need to communicate with people from the other site, packets are encrypted by

a virtual private network (VPN) gateway router before being released into the public

network. Routers in the Internet can only read the outer packet headers going from

VPN GW NW1 to VPN GW NW2, but cannot gain any information about the actual

communication partners or the contents of the communication.

Corporate

NW 2

Corporate

NW 1

VPN

GW

VPN

GW

Internet

IPsec Tunnel

Figure 5: Confidential Data Transmission with IPsec Tunnel

Depending on the communication bandwidth between the two sites, en- and

decryption of the aggregate traffic between the two sites may represent a significant

processing burden for the gateway routers, which may not be handled by software

processing alone, but is often handled by hardware accelerators (see also the

Netronome NFP3200 [21] or SafeNet EIP-196 [19]).

Another application that uses cryptography is the domain of wireless LANs (WLAN).

Due to the open nature of the wireless radio link in contrast to wireline links, all

communications between the end user device and the WLAN hot spot can be

Chapter 2 - State of the Art

40

overheard by anyone without the use of cryptographic methods. Therefore the IEEE

WLAN standards have published schemes like wired equivalent privacy (WEP) or

Wi-Fi Protected Access (WPA) to better protect wireless networks from attacks. For

the same security concerns, the digital radio channels of both GSM and UMTS

mobile communication systems feature encryption technology in order to insure

confidentiality of the transported information.

2.2.4. Multimedia Applications

With the increasing availability of high-bandwidth packet data networks,

transmission of voice and video data over Internet networks became feasible. The

fact, that transmission via packet switched networks is offered for a lower price

together with potential cost savings by consolidating voice and data traffic into a

single network infrastructure posed another incentive for companies to push for a

converged network. In 2003, the IETF released two standards that describe the

RTP/RTCP [40] protocols and mappings for voice and video data into RTP streams

[41] to allow for transmission of voice and video streams over classical IP networks.

RTP is typically used on top of UDP to provide sequence numbers and time stamps

for the otherwise unprotected datagram delivery protocol. Transmission of real-time

data using the TCP protocol that already insures correct packet sequence at Layer 4

is not advisable, as the delays caused by the TCP protocol e.g. in case of packet

loss or reordering is not acceptable for interactive communication. However, the

RTP/RTCP protocols alone are not sufficient to implement a voice-over-IP (VoIP)

system [42], as it contains no signaling protocol. For this purpose, protocols like

session initiation protocol (SIP) [43], [44] or H.323 have to be used. These protocols

negotiate the call parameters between two or more endpoints (e.g. used codec, port

numbers for RTP and RTCP connection for both directions, bandwidth reservations,

etc.) before the actual RTP connection can be established to transport the digitized

voice samples in an appropriate format (see Figure 6). Apart from the

communication via SIP/RTP protocols, commercial VoIP providers like, for example,

Skype have also developed their own, proprietary protocols to achieve IP-based

telephony services.

Chapter 2 - State of the Art

 41

IP Phone:

A@ISP.com
IP Phone:

B@ISP.com

SIP Proxy Server

1: E
stablish C

all to B
 (P

aram
eters)

3:
 C

al
l A

C
K

4: C
all A

C
K

5: RTP Flow (Parameters)
5: RTCP Flow

5: RTP Flow (Parameters)
5: RTCP Flow

IP

UDP

RTP

G.711

L2

IP

TCP

SIP

SDP

L2

2:
 F

w
d:

 E
st

ab
lis

h
C
al

l t
o

B
 (P

ar
am

et
er

s)

Figure 6: Simplified Connection Setup and Protocol Stack for VoIP

When transmitting voice calls over the Internet, the digitized voice samples are

coded using one of the traditional telephone standards, like G.711 (ISDN), G.726

(ADPCM) or the GSM voice codec. Depending on certain connection parameters, a

packetization interval is chosen, from which all coded samples are assembled into a

single RTP packet payload. At the receiving end, the voice samples are retrieved

and stored for a predefined period to compensate for possible packet reorderings or

transmission jitter. However, a maximum transmission delay of more than 150 ms

may already cause a significant deterioration of the user's quality of experience. The

RTCP connection that is established along with the RTP flow constantly monitors

the connection quality, and may trigger a change of important parameters like the

used codec or the packetization interval to minimize negative effects for the users.

In general, it is important for VoIP applications that there is little or no packet loss

and packet reordering, and a low end-to-end latency. This can generally not be

guaranteed by the traditional best effort forwarding of UDP packets in the Internet.

Consequently, network providers willing to promote use of VoIP services over the

Internet have to undertake certain measures to prioritize such traffic over other

flows. The DiffServ architecture referenced in section 2.2.2, in combination with call

acceptance policies (RSVP, SIP), can be an adequate means to insure a timely and

reliable delivery of VoIP traffic over a packet switched network. However, there are

Chapter 2 - State of the Art

42

two main challenges to effectively implement the required QoS on an end-to-end

communication path:

– The RTP connections use dynamically assigned (i.e. random) UDP port numbers

that are negotiated during the connection setup phase by one of the established

signaling protocols. If the ISP is not able to wiretap the call setup traffic, it will

later not be able to differentiate between the corresponding RTP packets and any

other (possibly low priority) UDP traffic.

– Even if the provider knows about the negotiated connection parameters and

assigns the traffic to a high-priority DiffServ traffic class, the set DSCP value might

not be regarded by other ISPs, when the packets are delivered outside the original

service provider's network.

For video applications transmitting over the Internet the situation is similar to that of

VoIP. If it is only a unidirectional connection (like e.g. viewing a video on YouTube or

watching a TV program online), it is possible to provide larger intermediate buffers

on the receiver side in order to compensate for reordered packets and packet jitter.

If the video belongs to an interactive videoconferencing session, the same delay

considerations as for VoIP hold. Of course, the required bandwidth to deliver video

in an acceptable quality for the end user is significantly higher than that of pure

voice transmission.

2.2.5. Mobile Networks

The following section, which summarizes some of the findings in [45], gives a short

introduction to the network backbone in mobile data networks. The following parts

will focus on the data plane network topology and protocol stacks, as this is most

relevant for FlexPath applicability in chapter 3. Further details about GSM and

UMTS network architecture and network elements are found in [45].

2.2.5.1. UMTS-PS Network Topology

Although explicit data about real network topologies is not publicly available, some

conclusions may be drawn from the physical layer dimensioning of the individual

links in the system and analyses in [46] and [47].

Chapter 2 - State of the Art

 43

GGSN: Gateway GPRS Support Node

SGSN: Serving GPRS Support Node

RNC: Radio Network Controller

RNS: Radio Network Subsystem

NodeB: Base Station

UE: User Equipment (Mobile Terminal)

RNC

RNC
RNC

SGSNSGSN

GGSN

RNS

NodeB

RNC

Voice & Data over ATM/AAL2

on T1/E1, T3/E3 TDM links

or even 1 Gb Ethernet

GTP over UDP/IPv4 over ATM

on STM-1 (OC-3)/STM-4(OC-12) SDH links

or 1 Gb Ethernet

IPv4 over high speed link

e.g. OC-192, OC-768

UE

GTP over UDP/IPv4 over ATM

on STM-16 (OC-48)/STM-64(OC-192) SDH links

Internet

GGSN: Gateway GPRS Support Node

SGSN: Serving GPRS Support Node

RNC: Radio Network Controller

RNS: Radio Network Subsystem

NodeB: Base Station

UE: User Equipment (Mobile Terminal)

RNC

RNC
RNC

SGSNSGSN

GGSN

RNS

NodeB

RNC

Voice & Data over ATM/AAL2

on T1/E1, T3/E3 TDM links

or even 1 Gb Ethernet

GTP over UDP/IPv4 over ATM

on STM-1 (OC-3)/STM-4(OC-12) SDH links

or 1 Gb Ethernet

IPv4 over high speed link

e.g. OC-192, OC-768

UEUE

GTP over UDP/IPv4 over ATM

on STM-16 (OC-48)/STM-64(OC-192) SDH links

Internet

Figure 7: Exemplary Network Topology of a UMTS Packet Domain Network

Figure 7 illustrates an extrapolated snapshot from the PS (packet switched) domain

of UMTS. As the link speeds of the node interconnects increase on each level of

hierarchy from the base stations towards the core network elements, aggregation

factors for each hierarchy level can be estimated. Assuming a peak data rate of 2

Mbit/s per radio cell and a base station serving three cells (120° sector antennas), an

individual NodeB would carry up to 6 Mbit/s of traffic. Newer modulation schemes

as found in HSDPA and HSUPA would raise the figures into the order of 3×20

Mbit/s=60 Mbit/s.

Table 1: UMTS Backbone Aggregation Factors

Link Interconnect

Standard

Aggregation

(cells)

Aggregation (from lower

hierarchy)

Radio Cell 2 Mbps radio 1 n/a

NodeB-RNC E1/STM-0 1/25 1 to 25

RNC-SGSN STM-1/STM-4 75/300 3 to 12

SGSN-GGSN STM-16/STM-64 1,200/5,000 4 to 64

GGSN-External STM-64/STM-256 5,000/20,000 1 to 16

Table 1 lists typical interconnect technologies on the different links and extracts the

resulting aggregation factors for each hierarchy level based on 2 Mbit/s traffic per

cell.

The RNC is responsible for many control plane tasks for the attached NodeBs.

These functions are typically mapped to software and are hardly suitable for

hardware acceleration. While the traffic to and from the locally attached NodeBs is

Chapter 2 - State of the Art

44

less than 51 Mbit/s (STM-0 rate) and the RNCs are connected with peering links

among each other and towards the SGSN with STM-1 or STM-4 links, an

aggregation factor of 3 to 12 may be derived, i.e. up to 12 RNC devices can be

chained towards a single SGSN interface. Using the same method, it can be

assumed that up to 64 SGSNs are linked towards a GGSN, where an additional

traffic aggregation can be observed towards the external network links.

2.2.5.2. UMTS-PS Data Plane Protocol Stacks

Radio Link

MAC

RLC

PDCP

App. IP

Radio Link

MAC

RLC

TDM PHY

ATM AAL2

NodeBUE

TDM PHY

ATM AAL2

PDCP

SDH

ATM AAL5

RNC

IPv6 (IPv4)

UDP

GTP

SGSN

SDH

PPP

GGSN

App. IP

SDH

ATM AAL5

IPv6 (IPv4)

UDP

GTP

App. IP

Radio Link

MAC

RLC

PHY

MAC

NodeB

PHY

MAC

PDCP

SDH

RNC

IPv6 (IPv4)

UDP

GTP

SGSN

SDH

PPP

GGSN

App. IP

SDH

IPv6 (IPv4)

UDP

GTP

App. IP

Radio Link

MAC

RLC

PDCP

App. IP

UE

ATM-based UMTS Packet Backbone

IP-based UMTS Packet Backbone

IPv6 (IPv4)

UDP

IPv6 (IPv4)

UDP

PPPPPP

App. IP App. IP

SDH

IPv6 (IPv4)

UDP

GTP

SDH

IPv6 (IPv4)

UDP

GTP

PPPPPP

App. IP App. IP App. IPApp. IP

SDH

ATM AAL5

IPv6 (IPv4)

UDP

GTP

SDH

ATM AAL5

IPv6 (IPv4)

UDP

GTPPDCP PDCP

App. IPApp. IP App. IP App. IP App. IP App. IP

Figure 8: Data Plane Protocol Stacks of UMTS/GPRS with ATM and All-IP Backbone

Figure 8 shows the data plane protocol stacks for UMTS/GPRS with both ATM and

IP as networking protocols. The original version of the UMTS standard is based on

ATM, with AAL2 and AAL5 used to support both voice and data traffic in a unified

network architecture. The QoS behavior of ATM with its virtual circuit connections

makes this solution also interesting from a network management point of view. In

the all-IP network, which is currently proposed, additional measures beyond IP are

necessary to avoid interference between real-time and non-real-time traffic classes

(see also 2.2.2, 2.2.4). It can be seen that the data plane functionality of the SGSN is

quite simple as no protocol conversions are performed at this unit. All other network

elements have to perform protocol conversions (gateway functions, cf. red arrows in

Figure 8) for all traffic that is forwarded towards another hierarchy element.

Chapter 2 - State of the Art

 45

2.2.6. Carrier-grade Ethernet and Internet Backbone Evolution

Originally, Ethernet was developed during the 1970s and first standardized by the

IEEE in the 802.3 standard in 1983. It had been developed as a local area

networking technology, used to connect computers and servers within the same

building. Over the course of the years, Ethernet became the dominant LAN

technology and continuous development efforts increased the transmission

bandwidth from the original 10 Mbit/s to 10 Gbit/s. As of 2009, standardization work

has begun defining a 100 Gbit/s standard.

Initially evolving from traditional long-distance telephony networks as only wide area

networks, data network standards such as ATM, MPLS and Sonet/SDH were

developed as transport architectures for packet traffic based on optical fiber

technology with data rates between 155 Mbit/s (STM-1) and 39.8 Gbit/s (STM-256).

These technologies were designed for supporting both digital voice and packet-

based data communication over a shared infrastructure and included very efficient

QoS methods and fault-tolerant redundant transmission necessary for high-

availability. Due to the relatively few systems needed for the backbone

infrastructure, these systems are significantly more expensive than Ethernet

technology deployed in the LAN field. While the transmission speed of the classical

backbone technologies was initially much larger than in the LAN technology in use

at the same time, this is no longer true considering the most recent advances in the

Ethernet standardization bodies.

As virtually all traffic in the Internet somehow emerges from and is destined for local

area networks (both for residential customers, who typically maintain a small LAN

behind their DSL-Router or cable modems, as well as content providers with their

private enterprise networks) and taking into account the effort necessary on the ISP

side to translate between the different transmission standards, it is increasingly

attractive to transform the Internet backbone into an Ethernet-based network. In

addition, operators can hope to make use of the better economies of scale, when

migrating towards the higher-volume Ethernet infrastructure ([5], [48]).

However, traditional Ethernet as it was intended for LAN use, has serious scaling

issues and does not implement the QoS and fault-tolerance mechanisms found in

current backbone networks. Recent efforts in the IEEE 802 standards committee

have added VLAN tagging with QoS marking (IEEE 802.1Q, IEEE 802.1p) in a similar

fashion as the DSCP codepoints found in DiffServ-enabled IP networks (see 2.2.2).

The concept of VLANs allows to provision logically separate networks over the same

physical medium. In order to address the scaling limitations of traditional Ethernet (it

is practically infeasible to maintain lookup tables with millions of 48-bit MAC

addresses, which are globally unique, but not in any form structured in accordance

with the network topology), traffic between a pair of networks or network access

Chapter 2 - State of the Art

46

points may be aggregated into distinct VLANs. As the VLAN tags only support just

over four thousand such VLANs, provider backbone bridging (PBB, IEEE 802.1ad)

allows to build a stack of VLAN tags at the start of the Ethernet frame that allows

constructing a hierarchy of VLANs in order to transport aggregated flows from the

access network through the aggregation network towards the packet core (see also

[48], [49] and Figure 1 in chapter 1).

Although it could be argued that these latest developments may ultimately lead to a

network architecture that would be fully implemented using Ethernet, carrier

Ethernet and IP technologies; the large installed base of non-Ethernet ("legacy")

networks enforces a gradual transition, where newly constructed or recently

upgraded networks may be using the latest technology, but the installed base with

its variety of technologies ranging from ATM over Sonet/SDH to MPLS will remain in

use for the remainder of that equipment's lifetime. Consequently, there will be a

continued need for gateway devices that are able to translate between these

different protocols at the edges of the individual networks, in order to insure full

connectivity and interoperability.

2.2.7. Conclusions

The various examples for networking applications discussed before can be

categorized into two different groups with respect to the interdependence between

individual packets:

– Stateless Networking Applications: simple IP forwarding and layer 2 switching

are representatives of the stateless networking applications. In these applications,

the packets can be processed individually, i.e. processing of a later packet can be

achieved independently of the processing of earlier packets. This independence

can be exploited very well by NP architectures with many parallel processing

units, as the task of processing multiple packets can be parallelized in a

straightforward fashion. In addition to plain forwarding and switching, DiffServ

forwarding with different QoS priorities for various traffic classes can be regarded

as a stateless networking application.

– Stateful Networking Applications: In contrast, when the forwarding function is

appended with flow-specific information like (1) the traffic parameters in an

IntServ environment, (2) connection-specific sequence numbers used for IPsec or

(3) forwarding is based on higher layer connection information found in gateway

functions, the networking application relies on some kind of state information. An

important aspect is that the state information must be updated after processing a

packet and the processing of the subsequent packet relies on the results

triggered by previous packets from the same connection. When mapping such

stateful applications on parallel processing units, caution has to be exercised in

Chapter 2 - State of the Art

 47

order to insure both the consistency of the state information and the correct

processing sequence of the individual packets from each different flow.

But the regarded networking applications may also be classified according to the

individual processing requirements within the network-internal nodes and with

respect to their feasibility for hardware support:

– IP forwarding can be accomplished with a few relatively simple operations. These

can be accomplished in an optimized way either by using processors with

customized instruction sets or dedicated hardware accelerators with limited

configurability. Cryptographic algorithms also have a regular structure, but are

very computationally expensive. For this reason, the en- or decryption is usually

transferred to hardware accelerators, if a significant share of the traffic has to be

protected.

– However, control and management of the state information (SPD and SAD

databases) require general-purpose calculations, which are usually not moved to

dedicated hardware. Changes in the operational details of the protocols, e.g.

improved key exchange protocols, also require an architecture that can be easily

adapted in the field. The same is also true for the interworking functions in

gateway devices or deep packet processing applications like virus scanning or

intrusion detection, where entire protocol stacks including layers 4 and higher

have to be processed.

The latter classification of networking application characteristics is already reflected

in the offered mix of programmable units and customized hardware in current

commercial NP designs (see chapter 2.1). The FlexPath NP architecture, which will

be presented in chapter 3, optimizes the performance by providing different

processing paths (i.e. software / hardware unit traversal sequences) that are best

suited for the different traffic types. Application classes of the arriving packets have

to be identified, and then the packets can be dispatched to the best fitting

processing path. In addition, by differentiating stateful and stateless applications, it

is possible to apply a combination of load balancing techniques, which are well

suited for either case.

Chapter 2 - State of the Art

48

Chapter 2 - State of the Art

 49

2.3. Packet Classification

Packet classification is a necessary task in all current network processing devices

and has to be executed in various fashions depending on the application

requirements. Packet classification algorithms can be classified into:

– Single-field classification: a decision on the further processing of a packet

depends only on a single header field. This is for example the case for simple

routing lookups, which rely only on the IP destination address field. QoS-aware

forwarding within a DiffServ domain, where the DSCP field in the IP header

determines the service class of the packet is also a single-field classification

problem. State-of-the-art techniques for single field classification, many of which

are also used as components in multi-field classification algorithms, are presented

in section 2.3.1.

– Multi-field classification: More complex applications like access control /

firewalls, flow specific processing, etc. base the action on multiple header fields.

The most important example is the Internet five-tuple, which consists of the IP

source and destination addresses, layer four protocol and layer four source and

destination port numbers. The Internet five-tuple is generally conceived to

unambiguously describe an individual flow (i.e. connection) between any two

parties. State-of-the-art techniques for multi-field classification algorithms are

later described in section 2.3.2.

As I will show later in chapters 3.2 and 4, the Path Dispatcher, which determines the

best suitable processing path of the arriving packets, contains a reconfigurable rule

base that effectively performs a multi-field packet classification. The heterogeneous

decision graph algorithm (HDGA) proposed later in chapter 4, is based on some

ideas of existing classification schemes and optimizes them for the specific

environment faced in the FlexPath Path Dispatcher.

2.3.1. Single-Field Classification

The simplest form of classification is based on only one field. A practical example of

such a single-field classification is the routing lookup, where packets at the router

have to be classified according to their IP destination address. The extracted

address has to be matched to the entries in the routing table, and the packet is

forwarded to the interface stored next to the matching address entry. In case of the

IP next-hop lookup, the entries of the routing table can be either fully specified IP

addresses, or address prefixes. The packet then has to be forwarded to the

interface associated with the longest matching prefix, i.e. the prefix with the highest

number of corresponding bits. The following subchapters present some basic

search techniques that are used to find entries corresponding to a given search key.

Chapter 2 - State of the Art

50

2.3.1.1. Linear Search

The most basic search mechanism is linear or sequential search ([50], chapter 6.1,

pp. 396 ff.). At first, the keys of the database are stored in a list. When the search

commences, the list is checked from the beginning until the key corresponding to

the searched item is found. If the searched string is not in the list, the search is

unsuccessful. The average search time for a list with N entries is
2

1N , if all entries

are sought with equal probability. Thus the search complexity is O(N). Considering

the example database of Table 2, we observe an average search time of 5.5 cycles.

Table 2: Linear Search Table for Example Database

Entry Value (Key) Key in binary format

1 67 100 0011

2 27 001 1011

3 56 011 1000

4 32 010 0000

5 75 100 1011

6 29 001 1101

7 50 011 0010

8 39 010 0111

9 10 000 1010

10 84 101 0100

Due to the search complexity of O(N), it is apparent that linear search does not scale

well for larger tables. However, the basic scheme can be used with any list of

elements that do not have to be sorted in any kind. Therefore, linear search can be

beneficial especially in cases, where it is hard to establish an ordered list, e.g. by

frequently updating the entries in the table.

The search performance can be improved, if linear search can be applied to an

ordered list, where there are basically two possibilities. If the list is ordered by the

numerical order of its elements, the search can be stopped when the first value

greater (or less) than the requested key is found. Therefore, searching for an element

that is not contained in the list is accelerated. The second optimization would be to

sort the elements in descending order with respect to the search frequencies. In this

way, keys that are searched more often are situated at the beginning of the list and

are in consequence found earlier. In case the frequency is not known beforehand,

there are also adaptive schemes proposed, which update the sequence of the list

during the search operations, so that the list is self-adapting towards the current

operational environment.

Chapter 2 - State of the Art

 51

In the networking domain, linear search can often be found as search technique for

collision resolution in hashing-based searches (see section 2.3.1.4).

2.3.1.2. Binary Tree Search

Binary tree search (see [50], chapter 6.2.2, pp. 426 ff.) requires that the elements of

the database are sortable into order. Starting from a selected root element, a tree

structure is generated with two children per node. Elements that are smaller than the

value stored at the inspected node are stored in the left sub-tree, larger elements in

the right sub-tree. When a search is initiated, elements are compared starting at the

root node and if the search string is not found either the right or left sub-tree is

searched recursively. As the number of elements stored in each level of the tree

increase by a factor of two for a balanced tree, the search complexity is reduced to

O(log2N). This reduction in complexity makes binary search a very attractive method

also for large databases.

67

27

56

32

75

29 50

39

10 84

50

29 67

27 32 56 75

10 39 84

Figure 9: Binary Search Trees for Example Database

However, if the keys are already in a sorted order when inserting them into the tree,

a degenerated tree may result that approaches linear search as a worst case.

Therefore, tree balancing schemes are used in situations, where frequent updates of

the database occur, in order to obtain a near-optimum performance (see also [50],

chapter 6.2.3, pp. 458 ff.).

This problem is illustrated in Figure 9, where the entries of Table 2 are inserted into

the tree in an unmodified order (left tree). This tree has a maximum depth of 6 nodes

and requires on average 3.4 cycles to find the searched value. In the right tree, the

insertion order has been changed such that the maximum tree depth is reduced to

four levels (  410log
2

). The average search time for equally likely values is reduced

to 2.9 cycles. As N=10 is not a power of two, some nodes at the fourth level are

unoccupied.

2.3.1.3. Binary Tries

A binary trie (derived from the word reTRIEval and pronounced "try"; [50], chapter

6.3, pp. 492 ff.) looks similar to a binary tree at first. However, instead of storing the

keys within the nodes along with the two child pointers and comparing the key to

the searched element, the position in the trie already determines the actual

Chapter 2 - State of the Art

52

contents. The binary trie treats a number as a string of a certain length. The root

node contains the empty string. From here, a branching is made recursively with the

left child appending a '0' to the string and the right child appending a '1'.

''

1

10

100 101

101 0

101 01

101 010

101

0100

100 1100 0

100 10100 00

100 101100 001

100

1011

100

0011

0

01

011

011 1011 0

011 10

011 100

011

1000

011 00

011 001

011

0010

010

010 0

010 01

010 011

010

0111

010 00

010 000

010

0000

00

001000

000 1

000 10

000 101

000

1010

001 1

001 11

001 110

001

1101

001 10

001 101

001

1011

Figure 10: Binary Trie for Example Database

Figure 10 shows the binary trie for the same database as presented in Table 2 and

Figure 9. In order to get the binary trie, we have to convert the keys to their binary

representation first. The labels within the individual nodes are featured for clarity

only. The actual trie would only store markers (grayed fields) for the nodes

representing actual values from the database. White nodes or nodes that are not

linked within the trie lead to nodes that do not exist in the original database.

Searching the trie takes seven cycles, as all database entries can be symbolized as

7 bit numbers. In general, the search time can be expressed as O(w) for any

database where the largest member can be represented with w bits.

Binary tries can also be used very efficiently, when the longest matching prefix for a

given key is sought as this is the case in CIDR routing table lookups (see chapter

2.2.1).

An effective variant to reduce both the size and search time complexity for tries has

been proposed by Morrison [52] with the PATRICIA (PATRICIA is an acronym for

"Practical Algorithm to Retrieve Information Coded in Alphanumeric") tries.

PATRICIA is based on a binary trie, but nodes that have only a single child are

skipped. Instead, the nodes are containing information, at which bit position the

next test has to be performed. Only the final node contains a copy of the original

string that has to be compared to the search word in order to verify an actual match.

Figure 11 shows the PATRICIA trie corresponding to our example. The PATRICIA

trie has N-1 internal nodes plus N leaves pointing to the keys of the actually stored

strings.

Chapter 2 - State of the Art

 53

bit 1

bit 3

101

0100

100

1011

100

0011

bit 2

bit 3

bit 4

011

1000

011

0010

bit 5

010

0111

010

0000

bit 3

bit 5
000

1010

001

1101

001

1011

bit 4

Figure 11: PATRICIA Trie of Example Database

If a PATRICIA trie is constructed for variable length prefixes of IP addresses, the

longest matching prefix may be found very effectively as all intermediate prefixes are

passed on internal nodes during the search operation from the root towards the leaf

nodes. In addition, new entries may be inserted or deleted from trie data structures

with little effort, as the structure of the trie is directly related to the contents and no

complex re-balancing operations have to be performed.

2.3.1.4. Hash Table Search

The final search algorithm of the classical single-field searches presented in this

work is hash table search (see [50], chapter 6.4, pp. 513 ff.). In contrast to the

previously discussed search techniques, the search is not performed on the keys

itself, but a hash value h(k) is computed from the key k using the hash function h. An

important property of hash functions is that the hash value h(k) has fewer bits than

the original search key k. Basically, any function may be used for hashing, but in

order to obtain a good search performance, functions with certain mathematical

properties have to be chosen.

Hash table searching is intended in areas, where there are far fewer entries in the

database than the theoretically possible number of entries given the width of the

search keys. Instead of working on tables or lists with the original length, the hash

function is used to compress the search space to a significantly smaller space.

Consider the example database of Table 2 and focus on the binary representation of

the stored values. We need seven bits to encode the numbers in range smaller than

100, but we have only 10 entries. We could choose a hash function h(x)=x mod 16,

effectively regarding only the four least significant bits of every key. Table 3 shows

the resulting hash table for the example database of Table 2.

When searching for a specific key, e.g. 39, we first compute the hash function h(39)

= 39 mod 16 = 7. Now the hash table is inspected at position 7, and the matching

entry is immediately found. Thus, the search can be completed with a single lookup

operation (plus the computation of the hash function), which yields an optimal

search complexity of O(1). However, when searching for the key 75, a different

behavior can be observed. The index h(75)=11 lists two entries, namely 27 and 75.

Chapter 2 - State of the Art

54

This effect is called collision and happens, when two different keys from the initial

database evaluate to the same hash value. As the hash space (in our example

24=16) is smaller than the number of possible values (100), collisions are

unavoidable, if the number of entries in the table exceeds the size of the hash

space. But collisions can also not be excluded if this requirement is fulfilled. The

amount of collisions happening when the table size is smaller than the hash space

depends on both the used hash function and the entries of the database. From a

theoretical point of view there exist "perfect hash functions" that produce collision-

free distributions of the keys. In practice, different classes of hash functions are

used for general-purpose applications that try to find a suitable compromise

between computational complexity, balanced distribution of the input values to the

hash space and applicability for key sets that are unknown during design time. In

the networking field, cyclic redundancy checks are a popular choice for constructing

hash tables [51].

Table 3: Hash Table for Example Database

Index Contents

0000 010 0000; EOL

0001 EOL

0010 011 0010; EOL

0011 100 0011; EOL

0100 101 0100; EOL

0101 EOL

0110 EOL

0111 010 0111; EOL

1000 011 1000; EOL

1001 EOL

1010 000 1010; EOL

1011 001 1011; 100 1011; EOL

1100 EOL

1101 001 1101; EOL

1110 EOL

1111 EOL

When using imperfect hash functions, the hash table lookup algorithm has to

provide means to tackle collision resolution. One popular and simple method is

implemented in Table 3: chaining. Colliding entries are stored in a linked list (see

also 2.3.1.1) under the corresponding index. This list has to be searched

sequentially during collision resolution and increases the total search time from O(1).

A worst case upper bound of O(n) would be achieved, if a degenerate database

contains only colliding entries that all map to the same hash value. However, for real

world problems with good hash functions, the collision probability is small, so that

Chapter 2 - State of the Art

 55

the actual overhead remains well limited and hash table searches achieve attractive

performance results. Alternative collision resolution schemes like subsequent hash

searches, tree structures, etc. exist, but shall not be further discussed within the

focus of this thesis.

2.3.1.5. Content Addressable Memories

In contrast to the algorithmic search techniques presented in the previous

subchapters, which may be implemented either in software or hardware, content

addressable memories (CAM) are hardware solutions that are specially designed for

search problems. They are currently widely employed as standard co-processors in

commercial solutions for both routing lookup (single-field packet classification) and

firewall filtering (multi-field packet classification) applications in network search

engines (NSE) [53], [54].

The underlying working principle of CAMs may be understood as that of an inverted

SRAM memory. In the classical SRAM, memory cells are grouped into words of

distinct width (e.g. 32/64/256 bits) holding the actual information. The address width

is derived from the number of words contained in the memory device, e.g. a 4 MB

memory with 32 bit word width would be 1M words large and is addressed by a

  201log
2

M bit address. When the user puts a certain address on the device's

address bus, the data stored in the corresponding memory cell is retrieved and

delivered on the device's data bus.

In a CAM device, the contents of the database are stored in the memory cells during

the initialization. When the user searches for a specific key in the database, he will

put the data on the data bus of the device and the CAM performs a parallel

comparison of the data word to all contents in the memory. If the data is stored in

the CAM, the address of the corresponding cell is delivered on the address bus and

may be used to retrieve further associated data that is stored in a traditional

memory.

In contrast to simple CAMs, which are based on a single SRAM cell per CAM cell

and store only the distinct values 0 and 1; ternary CAMs (TCAM) are also available

that make use of a second SRAM within each CAM cell and allow storing "don't

care" values. When a search is requested, matches are reported if the '0' and '1' bit

positions in the database entries and on the data bus correspond, skipping the

contents in the "don't care" positions. In this fashion, it is easily possible to perform

searches with wildcard parameters, prefix matches and certain types of range

matches. The big advantage is that for such entries a single TCAM word is able to

represent a multitude of exact matching values, which is very space efficient.

As the matching logic within the CAM/TCAM solutions adds additional overhead

compared to plain SRAMs, the access times are not that fast and are typically in the

Chapter 2 - State of the Art

56

range of several tens of ns. A major drawback of TCAMs is the high power

consumption as all memory cells of a database are activated during a search

operation.

2.3.2. Multi-Field Classification

While searching large databases of only a single packet header field under hard

real-time conditions on multi-gigabit/s links may already be quite a challenging task,

the problem gets even harder when several (independent) fields from the packet

header have to be inspected. All applications that rely on flow identification (e.g.

firewall filtering, IPsec, etc.) involve identifying the associated information from either

the Internet five-tuple or a combination of further fields from the packet header.

Mathematically, the problem of multi-field packet classification on n fields can be

interpreted as finding the highest-priority rectangle in n-dimensional space, which

contains the point defined by the packet's header fields [55]. Gupta et.al. show that

for realistic rule base sizes, the performance bounds of algorithms known from

computational geometry are infeasible in the networking environment. For rule

bases with N rules over a d-dimensional space (i.e. d different header fields) the

bounded complexities are either O(log N) search time with O(Nd) storage or O((log

N)d-1) search time with O(N) storage space. Therefore, heuristic algorithms that try to

exploit characteristic features from the application domain have been developed.

Multi-field packet classification has been established as an industry standard taking

the structure of Cisco access control lists (ACLs) as a common template [61], [67]. In

addition to specifying exact match address values or prefixes, the Cisco ACL may

contain wildcards and range specifications for the port numbers. In realistic rule

bases, it is also possible that several rules overlap. This effect can also be seen in

the example rule base shown in Figure 13 in chapter 2.3.2.2, where rules 0 and 5, 2

and 5, and 3 and 5 partially overlap each other. Therefore, in addition to the rule

specifications, a priority is assigned with each rule, such that the highest-priority rule

can be chosen in such cases. This prioritization and the resulting danger of finding

several matching rules within a given region of packet values further complicate the

classification problem.

Chapter 2 - State of the Art

 57

The packet classification problem can be formalized in the following way ([55], [58],

[60], [61]):

Given are d header fields for each packet P that are relevant in the classification

problem

      1,...1,0 dPPP (2-1)

The rule base or filter set B of size N is a prioritized list of rules Rp, i.e. the rule index

p,  1,...,1,0  Np is also the priority of the rule and each rule consists of d

expressions E[i] on all possible header fields P[i]

  
110

,...,,



N

RRRB (2-2)

  ]1[],...,1[],0[ dEEER
p (2-3)

The following types of expressions are found in most practical rule bases, although

further expressions with a Boolean result are conceivable:

– Exact Match:

 valueiPiE ][:][(2-4)

 valueiPiE ][:][(2-5)

– Wildcard Match:

   valuemaskiPiE ][:][(2-6)

– Range Match:

 2][1:][valueiPvalueiE  (2-7)

– Prefix Match:

 prefix
iP

iE
m










2

][
:][(2-8)

An incoming packet matches the rules in M with

   ][given true,is][:1,...,0: iPiEdiRRMB
mm

 (2-9)

and

  MRihR
ih
 min ; (2-10)

is the highest priority matching rule.

Chapter 2 - State of the Art

58

Table 4: Example Rule Bases B with d=2 and N=7 (a, left) and d=3 and N=7 (b, right)

    31124,3100
0

 PPR       02,31124,3100
0

 PPPR

    63132,300
1

 PPR       02,63132,300
1

 PPPR

    47132,1904
2

 PPR       12,47132,1904
2

 PPPR

    710,6300
3

 PPR       *2,710,6300
3

 PPPR 1

    31116,63048
4

 PPR       *2,31116,63048
4

 PPPR

    3910,1504
5

 PPR       *2,3910,1504
5

 PPPR

    63132,47024
6

 PPR       02,63132,47024
6

 PPPR

Table 4 introduces two example rule bases with range matches in two dimensions

and exact/wildcard matches in a third dimension that will be used later to illustrate

some of the discussed classification algorithms.

The following chapters present the wide range of state-of-the-art multi-field packet

classification techniques.

2.3.2.1. Recursive Flow Classification (RFC)

Recursive Flow Classification (RFC) has been proposed by Gupta and McKeown in

1999 [57]. The basic idea behind RFC is to find an efficient mapping from a long key

(actually the concatenation of all relevant header fields from the current packet)

towards a short index, which describes the appropriate action. It is practically

impossible to pre-compute the action for each key and then look up the result in a

single step, since this would require a memory with 2S entries, where S is the

concatenated length of all relevant header fields. Therefore, a multi-stage approach

is chosen. At first, the concatenated header fields are split into several shorter sub-

keys. Each of these keys is used as an address for a memory. The obtained values

from the first stage are combined and yield the addresses for the memories of the

subsequent step. In the final step, the action can be calculated by combining the

lookup results from the last stage. Figure 12 illustrates the working principle of RFC.

The S=128 concatenated bits from the packet header are reduced to a T=12 bit

classification result in three phases using a total of 14 memory blocks.

1 Wildcard Match P[2]=* may also be expressed as P[2] ^ 0 = 0 in line with the formal

definition above. The asterisk is a common shorthand notation for wildcards.

2 These calculations assume transmission of 40-byte and 1500-byte IP datagrams over PoS

and Ethernet media. Protocol overhead calculations for PoS include SDH overhead, 9 bytes

Chapter 2 - State of the Art

 59

2
64

=

=1.8x10
19

2
S
=2

128
=

=3.4x10
38

2
T
=2

12
=

=4,096

2
S
=2

128
=

=3.4x10
38

2
T
=2

12
=

=4,096

2
24

=

=16x10
6

a) Reduction from concatenated header fields (e.g. 128 bit) to classification result (e.g. 4k actions)

P
a

c
k
e

t
H

e
a

d
e

r
(1

2
8

b
) S
ta

g
e

0
1

S
ta

g
e

0
2

S
ta

g
e

0
8

 16

 16

 16

...

S
ta

g
e

1
1

S
ta

g
e

1
4

 16

 16
 12

 12

...

S
ta

g
e

2
1

S
ta

g
e

2
2

 12

Phase 1 Phase 2 Phase 3

F
in

a
l

L
o

o
k
u

p

b) Three-phase RFC classification: 128 bit input with 16 bit chunks in first stage; 12 bit classification result

Þ

Figure 12: Working Principle of RFC

In [57], Gupta and McKeown state that they had investigated real-world classifiers

with 1700 rules in four dimensions and the RFC algorithm supports classification at

up to 10 Gbit/s line rates. However, both the storage requirements for the rule table

and pre-processing time (essential for dynamic updates of the memories when the

rule base changes) grow rapidly for classifiers with more than 6000 rules. In

addition, the RFC algorithm has no incremental update scheme, i.e. changes in the

classification rule base may lead to a complete recalculation and reconfiguration of

the stage memory contents.

2.3.2.2. HiCuts/HyperCuts

HiCuts [59] is a decision-tree based classification scheme also proposed by Gupta

and McKeown in 1999. The HiCuts classification may be explained by approaching

the packet classification problem from its geometric interpretation. Figure 13 shows

the two-dimensional rule base of Table 4a in its graphical representation.

Chapter 2 - State of the Art

60

P[0]: 6 bits, i.e. range 0-63

P
[1

]:
 6

 b
it
s
,
i.
e
.
ra

n
g

e
 0

-6
3

 Rule 0

Ru

le

1

Rule 2

Rule 3

Rule 4

Rule 5

Rule 6

Pkt (25, 39)

0

1

6

3

2

 4

8

 6

3

0 16 32 48 63

Figure 13: Graphical Representation of B from Table 4a

At the root node of the decision tree, the entire d-dimensional space is represented.

In each node, the d-dimensional space is split up into n equally sized sub-spaces by

cutting one selected dimension into n equally sized intervals. This process is

continued iteratively until a pre-defined number of classification rules are remaining

within the reached sub-space that may be resolved by a final linear search step.

Figure 14 shows the operation of HiCuts for an arriving packet with values (P[0]=25,

P[1]=39).

P[1] - 4 cuts

R3

R5

0-15

P[0] - 2 cuts

16
-3

1

P[0] - 8 cuts P[0] - 4 cuts

32-47
48-63

0
-3

1

3
2
-6

3

R0

R5
R4

0-
7

0-
15

1
6
-

3
1

3
2
-4

7

48-63

R1 R6 R6 -

8
-1

5

1
6
-2

3

2
4
-3

1

R2

R5
R2 R6

P[0] - 2 cuts

0
-3

4
-7

R1
R2

R5

3
2
-3

9

R6 - - -

4
0
-4

7
4
8
-5

5
56-63

Figure 14: HiCuts Tree; at most 2 Rules for Linear Search and 8 Cuts per Tree Node

Singh et.al. extended the HiCuts algorithm in 2003 by allowing cuts in several

dimensions to happen within a single node and supply an appropriately updated

heuristic to generate the resulting tree (Figure 15). Allowing to cut along several

dimensions instead of sticking with a single dimension in each tree node, reduces

the resulting decision tree for realistic classification rule bases to fewer levels. In

Chapter 2 - State of the Art

 61

[58], the authors quote that they require 2 to 10 times less storage space for a

HyperCuts tree compared to HiCuts and the worst case search time is ranging

between 50% and 500% better than HiCuts.

P[0] - 2 cuts

P[1] - 4 cuts

0-
31

, 0
-1

5
0-

31
, 1

6-
31

0
-3

1
,
3
2
-4

7

0
-3

1
,
4
8
-6

3

R3

R5

R0

R5

R1

R6

3
2
-6

3
, 0

-1
5

R3 R4 R6 R6

3
2
-6

3
, 1

6
-3

1
3
2
-6

3
, 3

2
-4

7

32-63, 48-63

P[0] - 8 cuts

0-
3

4
-7

8
-1

1
1
6
-1

9
2
0
-2

3
2
4
-2

7
28-31

1
2
-1

5

R1
R2

R5

R2

R5

R2

R5
R2 - R6 R6

Figure 15: HyperCuts Tree; at most 2 Rules for Linear Search and 8 Cuts per Tree Node

As both schemes cut the interval of each dimension into equally sized sub-intervals,

it may take several successive cuts (i.e. tree levels and correspondingly memory

accesses / search time) in order to resolve exact matches on a specific field. This

behavior would deteriorate the performance most, if the rule base contained exact

matches for long header fields, like e.g. the 32 bit IPv4 addresses. Both algorithms

use the maximum number of cuts allowed to be performed at each node (i.e.

number of children) and a bucket size for the remaining rules in a specific region as

tunable parameters during tree construction. By appropriately choosing these

parameters, search time, search complexity and tree size can be traded against

each other. HyperCuts additionally allows choosing the maximum number of

dimensions along which the cuts may be taken at each tree node.

2.3.2.3. Grid-of-Tries

The Grid-of-Tries classification algorithm was first described by Srinivasan et.al. in

1998 [60] and may be applied for two-dimensional classification, especially source-

destination IP address pairs. A first trie is constructed for the destination addresses

found in the classification rule base. Each of this trie's leaves contains a pointer that

leads to a source address trie containing all source addresses that share the same

destination address in the rule base. They state in their publication that although an

extension of the scheme towards higher dimensions (protocol field and port

numbers) would be theoretically possible; but the algorithm would not perform well.

The performance degrades significantly when the rule base includes range

specifications for the L4 port fields. Therefore, Cross-Producting (see 2.3.2.4) is

proposed for five-tuple classification.

Chapter 2 - State of the Art

62

In 2003, Baboescu et.al. [61] revisited the grid-of-tries algorithm and proposed

some modifications to support realistic five-tuple classification. The adapted

scheme is called EGT-PC (extended grid-of-tries with path compression). The

authors investigated several rule bases obtained from Internet Service Providers

(ISPs) and found out that across all these classifiers not more than 20 rules would

share the same source / destination address pair. In most cases, there would be

only between 3 and 5 rules per address pair. Therefore, they propose a two-stage

classification algorithm that would find all potentially matching source / destination

address pairs for an incoming packet and then linearly search the list with remaining

rules. As the address specifications often include prefixes in addition to full

addresses, a modification in the grid-of-tries structure is necessary in order to cover

all prefixes without backtracking in the trie. Additionally, they propose to compress

the source and destination address tries in a similar fashion as in PATRICIA (see

2.3.1.3).

In 2006, Pao and Liu [62] presented a further refinement to the EGT-PC scheme that

makes it better scale for larger classification rule bases and IPv6 addresses.

2.3.2.4. Bitmap-Intersection and Crossproducting

Bitmap-intersection and crossproducting are very similar classification schemes that

have been independently developed and presented at SIGCOMM 1998.

In bitmap-intersection, proposed by Lakshman and Stiliadis [63], the multi-

dimensional search problem is at first broken up into a set of one-dimensional range

searches. In a pre-processing step, a N-bit (for N rules) bit-map is calculated in

which for each interval in the given dimension the nth bit is set if rule n is contained

within the respective interval. During the search operation, the packet's fields are

used to determine the d intervals, in which the header fields lie. The d bitmaps may

then be combined by a logical AND-operation in order to find all rules matching the

packet fields in all dimensions. The searches in d dimensions may be parallelized in

a hardware implementation in order to save search time and increase the

performance of the algorithm. One drawback of bitmap-intersection is its storage

complexity of O(dN2) [55], i.e. a classification rule base in d dimensions with N rules

scales quadratically in the number of rules. Table 5 shows the bitmap-intersection

scheme for the two-dimensional rule base presented in Table 4a.

Chapter 2 - State of the Art

 63

Table 5: Bitmap Intersection - Intervals and Bitmaps

Dimension Interval # Interval Associated Bitmap

0 1 0 ≤ P[0] ≤ 3 1101000

0 2 4 ≤ P[0] ≤ 15 1011010

0 3 16 ≤ P[0] ≤ 19 1011000

0 4 20 ≤ P[0] ≤ 23 1001000

0 5 24 ≤ P[0] ≤ 31 1001001

0 6 32 ≤ P[0] ≤ 47 0001001

0 7 48 ≤ P[0] ≤ 63 0001100

1 1 0 ≤ P[1] ≤ 7 0001010

1 2 8 ≤ P[1] ≤ 15 0000010

1 3 16 ≤ P[1] ≤ 23 0000110

1 4 24 ≤ P[1] ≤ 31 1000110

1 5 32 ≤ P[1] ≤ 39 0110011

1 6 40 ≤ P[1] ≤ 47 0110001

1 7 48 ≤ P[1] ≤ 63 0100001

Assume an arriving packet with P[0]=25 and P[1]=39. The one-dimensional searches

will figure out that 25 belongs to interval 5 in the first dimension and 39 belongs to

interval 5 in the second dimension. The algorithm now combines the two concerning

bitmaps (1001001 AND 0110011)=000001 and the resulting bitmap indicates that

rule 6 is the only matching result. If we assume a packet with P[0]=10 and P[1]=30

the combination of the bitmaps (indices 2 and 4) would yield (1011010 AND

1000110)=1000010 and rule zero (the leftmost bit) would have to be chosen as the

highest priority match.

Similar as in bitmap-intersection, also crossproducting [60] constructs the d-

dimensional classification out of d one-dimensional range lookups. In contrast to

bitmap-intersection Srinivasan et.al. precompute a crossproduct table that contains

the best matching rule for all possible combinations (i.e. crossproducts) of the

ranges in each dimension. The worst case storage complexity of the crossproduct

table O(Nd) [55] is even worse than that of bitmap intersection, which makes the

algorithm practical only for relatively small rule bases. In order to address the

principle storage space problem, the authors of [60] propose an on-demand

calculation of the table that behaves like a cache. For every search operation, the

matching ranges are identified and the crossproduct of the indices is formed. If this

is already contained in the (incomplete) crossproduct table, the classification result

may be obtained in a single lookup. Otherwise the rule base has to be inspected (by

linear search!) and the corresponding entry will be appended to the crossproduct

table cache. By this optimization the authors promise to achieve a good average-

case classification performance with a viable storage requirement. In addition, the

Chapter 2 - State of the Art

64

authors of both bitmap-intersection and crossproducting assume smaller rule bases

with a few thousand rules at most.

2.3.2.5. Distributed Crossproducting of Field Labels (DCFL)

In 2004, Taylor introduced DCFL [64], [65], which is essentially an optimization of the

crossproducting scheme with a strong focus for hardware implementation. The

classification process is split into several steps, which may be implemented in a

hardware pipeline as shown in Figure 16.

At first, relevant packet fields are extracted from the packet and the one-

dimensional field searches are initiated, which compare the field value of the current

packet against the superset of all possible values present in the given classification

rule base. The result of these searches is a set of labels, representing one or more

matches per header field.

Second, the labels are fed into a so-called aggregation network. Here, at least two

label sets from the first search stage are combined (i.e. the crossproduct of the label

sets is calculated) and the outcome is compared against the set of valid

crossproducts that exist in the given rule base. In order to keep the complexity of

the crossproduct evaluation and set membership query low, combining only two

one-dimensional search results at a time appears to be a reasonable choice. The

remaining set of crossproducts is assigned new labels that can be fed into

subsequent aggregation stages in a recursive fashion.

At the final step of the aggregation network, a label for one matching rule or several

labels in case of overlapping rules will be found. In the latter case, a priority

resolution scheme is used to find the highest-priority matching rule from the given

set of labels.

Chapter 2 - State of the Art

 65

P[0] P[1] P[2]

Field Search

(ranges of P[0]):

1: 0-3

2: 4-15

3: 16-19

4: 20-23

5: 24-31

6: 32-47

7: 48-63

25, 10 39, 30 0, 1

5, 4 (0, 2), (1, 2)

Crossproduct (1,2):

(5,0), (5,2)

(4,1), (4,2)

Relevant Crossproducts (1,2)

w.r.t. B (11 of 21):

(4,0)=L0, (5,0)=L1, (6,0)=L2,

(7,0)=L3, (5,1)=L4, (6,1)=L5,

(1,2)=L6, (3,2)=L7, (4,2)=L8,

(2,2)=L9, (5,2)=L10

Field Search

(ranges of P[1]):

1: 0-7

2: 8-15

3: 16-23

4: 24-31

5: 32-39

6: 40-47

7: 48-63

Field Search

(exact/wc of P[2]):

0: 0

1: 1

2: *

Crossproduct (0,12):

(5,L1), (5,L10)

(2,L8)

Relevant Crossproducts (0,12) w.r.t. B (32 of 77):

(1,L0)=M0, (2,L0)=M1, (3,L0)=M2, (4,L0)=M3,

(5,L0)=M4, (1,L1)=M5, (1,L2)=M6, (1,L3)=M7,

(2,L4)=M8, (2,L5)=M9, (3,L4)=M10, (3,L5)=M11,

(1,L6)=M12, (2,L6)=M13, (3,L6)=M14, (4,L6)=M15,

(5,L6)=M16, (6,L6)=M17, (7,L6)=M18, (7,L7)=M19,

(7,L8)=M20, (2,L6)=M21, (2,L7)=M22, (2,L8)=M23,

(2,L9)=M24, (2,L10)=M25, (5,L1)=M26, (5,L2)=M27,

(5,L3)=M28, (6,L1)=M29, (6,L2)=M30, (6,L3)=M31

5, 2

(L1, L10), (L8)

Priority Resolution

M26, M23

R6, R5

In
d

e
p

e
n

d
e

n
t,
 o

n
e
-

d
im

e
n

s
io

n
a

l
fi
e

ld
 s

e
a

rc
h

e
s

A
g

g
re

g
a

ti
o

n
 N

e
tw

o
rk

P
ri
o

ri
ty

 R
e

s
o

lu
ti
o

n

Arriving Packet 0: (25, 39, 0)

Arriving Packet 1: (10, 30, 1)

Label / Rule Association:

R0: M0, M1, M2, M3, M4

R1: M5, M6, M7

R2: M8, M9, M10, M11

R3: M12, M13, M14, M15, M16, M17, M18

R4: M19, M20

R5: M21, M22, M23, M24, M25

R6: M26, M27, M28, M29, M30, M31

Figure 16: DCFL Classification with Three-dimensional Rule Base from Table 4b

A distinct feature of DCFL is its update procedure, which is accomplished by

sending special "update packets" through the stages of the aggregation network

that may update the local crossproduct tables and label assignments. This update

feature allows for consistent rule base changes while maintaining a high search

performance.

In contrast to the previously presented crossproducting scheme (see 2.3.2.4), the

storage space issue is addressed by aggregating the results not in a single step, but

distributing the decision over several pipeline stages. As in each stage some

Chapter 2 - State of the Art

66

crossproducts, which would not lead to matching results in the final rule base, are

filtered out; the total storage complexity can be reduced. This effect can be

observed in Figure 16, where for packet 1 the crossproduct (5,L10) is filtered out in

the second stage; the same holds for crossproduct (4,1) for packet 1 in the first

aggregation stage. As the chosen example rule base has wildcards - and therefore

overlapping specifications for many rules - only in its third dimension, the number of

matches from the individual field searches is limited to one or two. The number of

matches per field may however increase to an order of up to 5 for realistic rule

bases with overlapping range definitions and more wildcard specifications [64]. In

consequence, the size of the crossproduct at each aggregation note may multiply to

a range of 5×5=25 crossproducts that have to be searched against the list of

relevant crossproducts. While the size of the crossproduct could therefore grow in

subsequent steps (e.g. 5×25=125), the filtering of the obtained crossproducts

against the set of relevant crossproducts keeps the number of labels propagating to

downstream aggregation nodes limited.

Taylor states himself that the choice of the correct aggregation sequence, i.e. which

header field combinations should be combined first, has a significant impact on the

size of the intermediate crossproducts; and in turn onto the performance of the set

membership query. For static rule bases, an optimized aggregation sequence may

be found in advance, but the performance may deteriorate by subsequent

incremental updates to the rule base. He proposes using a dynamically

reconfigurable interconnection network between the individual pipeline stages, but

has not further elaborated this concept.

2.3.2.6. Multi-Field Classification using Binary Decision Diagrams (BDDs)

In their 2003 paper, Prakash et.al. [66] regard both the IP lookup function and the

more general packet classification task as a logical synthesis problem. Lookup and

classification problems are formulated as a Boolean function that takes the bits of

the packet header as inputs and computes the index of the desired action or the

next-hop destination as output.

In an initial attempt, they tried to feed the Boolean equations obtained from

disassembling a backbone routing table to the Xilinx synthesis tools for

implementation. This approach failed, but they were later able to route a manually

generated BDD structure onto the FPGA fabric. However, this solution disappointed

performance-wise with a combinatorial path delay of 85 ns.

Finally, a solution for the IP lookup problem is presented, in which the BDD of the

routing table is calculated offline and its nodes are encoded in an array of SRAM

memories that are used for searching through the BDD with the address bits from

the incoming packet. Some optimizations are presented to save on resources

needed for implementing the IP lookup.

Chapter 2 - State of the Art

 67

The authors prove that a straightforward extension of the BDD-based routing

scheme is not feasible for full five-tuple classification, as the memory requirements

for the BDD scales exponentially. This is also a known problem for existing trie-

based techniques. In order to obtain a viable solution, they present a partitioning

technique for the classification rule base in order to obtain a set of small BDDs that

may be evaluated in parallel. The resulting individual actions are then fed into a

priority resolution stage.

An important advantage of using BDDs versus binary decision trees (see 2.3.1.2) is

their node sharing property. Isomorphic sub-trees of a binary decision tree are

merged into a single instance, which allows saving memory proportional to the

amount of common structure in the rule base. In the outlook section of the paper

[66], the authors mention the possibility to move the approach from reduced

ordered BDDs (ROBDD) to free BDDs, where the variable ordering between different

branches in the diagram is not necessarily uniform. Although free BDDs offer a

theoretical benefit in storage space, they state that a synthesis methodology for

such free BDDs is not yet known.

A

B B

C C C

D

E E

F

0 1

1

0 1

1

1

1

1

E

C B

A

C

F

B D

A

1

0 1 0 1

0 1

1

1

1

Figure 17: Reduced Ordered BDD (ROBDD, top) and Free BDD (bottom) for Boolean

Function CEECBAEFEBEADf 

Figure 17 shows both a ROBDD for the variable ordering A, B, C, D, E, F and a free

BDD for an example Boolean function CEECBAEFEBEADf  . While a

Chapter 2 - State of the Art

68

binary decision tree for the given function would result in 63 internal nodes, 64

leaves and a uniform depth of 6, the ROBDD represents the same function with only

10 nodes and two leaves (0 and 1; shown several times in Figure 17 for clarity) and

an average depth of 4.14. A free BDD, which has been constructed using the

heuristic described in chapter 4.2.3, has 9 nodes and an average depth of 3.7.

The gained insights on the theory of BDDs and their properties have partially

inspired the development of the HDGA classification algorithm implemented in the

FlexPath Path Dispatcher (see 4.2).

2.3.2.7. Traffic-Aware Decision Tree Classifiers

In 2005, Cohen and Lund [67] presented a design method of a traffic-aware decision

tree classifier for software implementation of a standard ACL deployment in ISP

edge routers. The method exploits structure found in real-world firewall applications

to obtain a decision tree with good average-case search times and reasonable

memory consumption.

Regarding commercial deployments, the authors state that TCAMs (see 2.3.1.5) are

the most widely used form of classification engines, but they hint to insufficient

support of range matches and high power consumption as incentives to look for

alternative solutions. Tree-based classifiers are identified as most effective

candidates with respect to the memory versus search time tradeoff.

One specialty of the proposed tree, that is in addition to the classical decision tree

scheme as discussed in 2.3.1.2, is the "common branching" technique. When

splitting the rule base at an internal node of the tree rules, which would replicate to

both children, are handled separately in a list structure. This technique addresses

the memory blowup problem otherwise associated with tree-based approaches, but

on the other hand increases the search time needed within the tree node. In

addition, a tree node is not further split, if the remaining set of rules could also be

resolved by linear search. This further reduces the storage requirements for the tree

structure.

Another optimization is based on the observation that realistic firewalls contain a

few "allow" rules and many "deny" rules. However, most of the traffic will be

admitted to the network: either it has been filtered before in other parts of the

network already, or it belongs to "legal traffic". Thus, it seems attractive to construct

the tree in a manner such that "allow" packets are evaluated before the "deny"

packets, i.e. they can be evaluated in deeper branches of the tree. The optimized

tree would then yield a good average-case performance with realistic traffic.

Chapter 2 - State of the Art

 69

2.3.2.8. Modular Packet Classification with Parallel Search Trees and Linear

Search

The final classification technique to be mentioned in this section is a modular

approach proposed by Woo [68] in 2000. The classification scheme fits to an

arbitrary-dimension problem, although only two- and five-dimensional classification

have been explicitly addressed in the paper. The basic idea is to reduce the number

of eligible rules that may match a given packet in three basic steps:

– In the first step some bits from the incoming packet header are used to determine

one of several binary or 2m-ary search trees for the second step.

– As the selected search tree is traversed, the number of rules still fitting the packet

header is further reduced. The partitioning continues until a specified limit of rules

(the paper proposes values between 8 and 128 rules) is reached to avoid the

memory size explosion associated with exact rule matching in tree structures.

– The final step of the algorithm searches through the remaining set of rules either

by linear search, binary search or using a TCAM.

For the scope of the paper, a software implementation is presented, that has been

especially optimized to work well with page-oriented memory hierarchies and

achieves a maximum classification throughput of 100k packets per second. The

author addresses the issue of covering and overlapping filter definitions and shows

that a separation of similar filters using linear search may be more efficient than

trying to distinguish them in a search tree structure.

2.3.3. Packet Classification and Logic Minimization

An interesting aspect about both single-field and multi-field packet classification is

addressed by Lysecky et.al. in [69]. In their publication, they look at the task of

implementing a firewall ACL in a TCAM device. The problem is that the cost for the

implementation is growing with the total amount of memory consumed by the rule

base. They state that logic minimization has been used before on IP routing tables in

order to reduce the number of entries by exploiting overlapping specifications in the

original routing table and replacing them with a merged entry that contains

additional wildcard entries. The authors show that they can apply this technique also

to the field of firewall filter rule bases and present a logic minimization tool that is

specially tailored for embedded deployment. While reaching a similar optimization

performance as the state-of-the-art Espresso technique ([70], [71]), they can claim a

factor of 20 improvement in processor runtime on an embedded ARM7 CPU. The

investigated rule bases have been reduced by between 17% and 40% using their

logic minimization algorithm.

Chapter 2 - State of the Art

70

In contrast to the algorithms presented in sections 2.3.1 and 2.3.2, the logic

minimization is not used to calculate the best matching rule of the rule base given

the header fields of an arriving packet, but it performs a pre-processing of the rule

base. The size (and therefore the search complexity) of the rule base may be

reduced, in order to keep the required storage space for the rule base smaller and

aid the classification algorithms in finding the classification result in a faster way.

2.3.4. Conclusions

Packet classification is a crucial part of packet processing that exhibits a high

degree of complexity and is very performance critical. Therefore, packet

classification has attracted lots of attention in the academic environment for

decades. In the early stages, many researchers focused on single-field classification

problems in order to improve the processing performance for simple Internet

routers. Later, the focus changed more towards multi-field packet classification with

the increasing importance of more advanced networking applications that introduce

QoS and security features into the network infrastructure and require flow-specific

treatment of the network packets.

The state-of-the-art multi-field classification techniques are all optimized for

evaluating firewall rule bases, which typically involve specifications of the Internet

five-tuple along with the associated actions. This flow-based granularity of the rules

leads to a very regular structure of the rule bases and a size between several

hundred and a few ten thousand entries. Range and prefix matches, which are

commonly found in rule specifications, can be most effectively addressed with tree-

or trie-based search structures. However, these techniques suffer from an

exponential memory consumption, if exact matches have to be determined.

Therefore, some more advanced tree classification algorithms try to combine the

tree traversal with linear search, binary search or TCAM lookups for selecting the

matching rule from a smaller set of candidate rules determined by the decision tree.

Another group of classification algorithms addresses the problem with a multi-stage

approach that constructs the final decision out of the results of individual field

searches (e.g. Crossproducting, Grid-of-Tries and DCFL) or by cascading several

searches (e.g. RFC, HiCuts, HyperCuts). Except for DCFL and simple tree-based

schemes, incremental updates of the rule base are not easily supported, which

means that a change in the rule base requires a complete recomputation of the

search data structure.

Another interesting aspect found in this prior art survey is the fact that the

complexity of the classification problem may be reduced in a rule base pre-

processing step by means of logic minimization. The logic minimization allows

compressing the rule base by dropping redundant or contradicting rule base

Chapter 2 - State of the Art

 71

specifications, which are typically introduced by the network operators during

manual firewall specification.

As I will discuss later in chapter 4.1, the multi-field classification problem associated

with determining the correct processing path for the arriving packets differs in

several parameters from the firewall-centric investigations of previously published

algorithms. The processing path in a FlexPath NP is mainly determined by the

application characteristics of the underlying networking application (see chapter

2.2), and not by the individual flow ID associated with the arriving packet. Therefore,

the classification can be limited to fewer rules, but the rule specifications have to be

extended to contain more fields from the packet header than just the traditional

Internet five-tuple.

Chapter 2 - State of the Art

72

Chapter 2 - State of the Art

 73

2.4. Multi-Processor Load Balancing

The prior art survey on current network processor architectures in section 2.1 has

shown that all relevant NP architectures are multi-core devices with a multitude of

processing elements. Although there exist some strictly pipelined NPs, most devices

today feature a parallel processor cluster and adhere to the run-to-completion

programming model. In these architectures, arriving packets will be assigned to a

specific processor and the networking application can be written as a simple,

sequential program from the point of view of the programmer. In order to exploit the

parallelism of the processing resources, a load balancing strategy is needed, which

decides about an appropriate CPU, to which an arriving packet will be assigned. If

the load can not be (almost) equally distributed over the available pool of processing

resources, some processors may run idle, while others become overloaded and

some of the arriving packets are lost. In such a case, the available resources of the

device would not be utilized, resulting in an inferior system performance.

This load balancing problem also extends to system setups, where the processing is

achieved by a sequence of processors (e.g. parallel pipeline processing, where one

out of several pipelines has to be selected) or a combination of parallel processors

and shared hardware accelerators.

2.4.1. Hashing-based Load Balancing Schemes

At INFOCOM 2000, Cao et.al. [51] presented a comprehensive performance

comparison of direct hashing-based Internet load balancing techniques for different

hash functions and for realistic Internet traffic traces. In addition, the direct hashing-

based methods were compared to table-based schemes with threshold mapping

and index-based load assignment (see Figure 18) that allow run-time adaptation of

the flow-bundle to processor mapping. However, the authors did not elaborate

potential adaptation strategies in detail but restrict their observations to a rather

abstract description and a few simulation results.

(H
a

s
h

F
u

n
c
tio

n
)

m
o

d
 N

H
a

s
h

F
u

n
c
tio

n

H
a

s
h

F
u

n
c
tio

n

Direct Hashing
Table-based Hashing w/ Threshold

Mapping

Table-based Hashing w/ Index-

based Approach

Thresholds:

0-7 => PE0

8-11 => PE1

12-17 => PE2

18-31 => PE3

Hash Value:

0 => PE0

1 => PE1

2 => PE0

:

31 => PE3

Figure 18: Classification of Hashing-based Load Balancing Schemes

The CRC-16 (16 bit cyclic redundancy check) of the Internet five-tuple is identified

to provide the best load balancing results applied in a static direct hashing-based

assignment. The table-based adaptive algorithms are based on an XOR of the IP

source and destination addresses and achieve a similar performance as the CRC-

based direct hashing approach.

Chapter 2 - State of the Art

74

2.4.2. Hash-based Load Balancing with Overload Spraying

In 2002, Dittmann and Herkersdorf proposed a hashing-based load balancing

system for parallel processing element (PE) network processors [73]. For each

incoming packet a hash value is computed out of the Internet five-tuple header

fields. A load balancing table maintains a list of hash values, their associated PE and

a timestamp, when the last packet with the given five-tuple hash had entered the

system, i.e. it can be categorized in the table-based hashing techniques with an

index-based approach as shown in Figure 18. If the incoming packet's flow has not

expired, the packet is forwarded towards the PE queue specified in the load

balancing table. If the timestamp is older than a predefined timeout value, the entry

in the load balancing table is updated to direct the packet towards the least loaded

PE queue (see also Figure 19).

F
iv

e
-T

u
p

le

E
x
tra

c
tio

n

H
a

s
h

-

F
u

n
c
tio

n

L
o

a
d

B
a

la
n

c
e

r

Load Balancing Table
Bundle PE Timeout LoadLimit

0x000 1 125 80

0x001 3 210 75

:

0xFFF 2 315 115

Figure 19: Hash-based Load Balancing with Overload Spraying

Two exceptions from this basic scheme are presented: An existing flow entry may

be changed and re-mapped to another PE before the timeout has occurred, if the

initial PE queue is already overloaded. In this fashion, an unnecessary packet loss in

the NP is avoided. Second, if the set of flows mapped to a single hash value (i.e.

hash collisions!) would exceed the processing capabilities of a single PE, these

packets may be distributed over several PEs, which is called packet spraying.

It is important to realize that packets may be reordered, when a re-mapping takes

place during a flow bundle's lifetime, and - of course - when packets of an

excessive flow bundle get sprayed. Packet reordering has been identified to cause

problems with the congestion avoidance mechanism of TCP, and should be avoided

as far as possible [78].

Chapter 2 - State of the Art

 75

2.4.3. Adaptive HRW Hashing (AHH)

Kencl [74] refines the basic idea of hashing-based load distribution in network

processors in his dissertation of 2003. He introduces an adaptive control loop in

combination with a robust highest random weight (HRW) hashing to the load

assignment process, called adaptive HRW hashing (AHH).

The highest random weight algorithm finds the target PE index j out of m PEs for a

given packet with the header field vector v using PE-specific weights xk,

k{0, …, m-1} in the following way:

  
 

  kvhxjvhx
k

mk
j

,max,
1,...,0




 (2-11)

This means that the hash function has to be calculated for each combination of the

extracted packet header fields (typically the Internet five-tuple) and each possible

processor index k. The hash values, which are assumed to yield random values, are

weighted with factors xk that can be adjusted during system runtime in order to

reflect the relative utilization of the associated processor. The packet is assigned to

the PE, for which the product of the weighting factor and the hash function

computed over the packet ID and processor ID is maximized.

An adaptive control loop assures that the weight vector x=[x0 … xm-1] used in the

HRW hashing is modified during runtime, such that the assignment of flow bundles

to the PEs is more evenly balanced for the biased hash bundles found in real

Internet traffic. Packet reordering may occur, when the weight adaptation triggers a

re-balancing of flow bundles from one PE to another.

An important characteristic of the AHH load balancing scheme is the minimum

disruption property, which means that when gradual changes are necessary in

rebalancing the load, only a few distinct packet flows are re-mapped and not the

entire hash space is reassigned with new values. This could be well observed when

comparing AHH to an interval-based adaptive hashing scheme (see Figure 18 in

2.4.1), where up to 50% of all flows could be re-mapped if a single PE fails and the

load has to be re-distributed over the remaining PEs in the processor complex. With

the minimal disruption property, only the flows assigned to the failing PE are shifted.

2.4.4. Adaptive Burst Shifting (ABS)

The load balancing approach of Shi et.al. [75] from 2005 is based on the observation

that Internet traffic usually consists of many flows with relatively low activity and

only a few flows with high activity, referred to as aggressive flows. Such a

classification has also been described before by Brownlee and Claffy [79] in 2002,

where they classify Internet traffic flows into dragonflies and tortoises or elephants

and mice. Dragonfly and tortoise traffic refers to the lifetime of traffic flows, while the

elephant and mouse analogy refers to the flow size or intensity, i.e. the amount of

Chapter 2 - State of the Art

76

data exchanged between two communication partners. Shi et.al. introduce an

adaptive burst shifter (ABS) that complements known hash-based load assignment

schemes. It remaps only aggressive flows from one PE to another if the hashing-

based assignment leads to a temporarily unbalanced load situation. The non-

aggressive flows are still mapped solely by the result of the implemented hashing

scheme (see Figure 20).

D
e

s
tA

d
d

r

E
x
tra

c
tio

n

H
a

s
h

-

F
u

n
c
tio

n

A
g

g
re

s
s
iv

e

F
lo

w
 Id

e
n

t.

L
o

a
d

A
d

a
p

te
r

Figure 20: Adaptive Burst Shifting (ABS)

Since the shift of a few aggressive flows already has an appreciable effect on PE

load, the number of hash flow shifts can be reduced and thus also packet reordering

within the processor cluster of the NP. ABS uses a two stage approach with a Flow

Classifier to identify the aggressive flows in the traffic, and a Load Adapter that

remaps the aggressive flows to the least-loaded PE when needed.

2.4.5. Hashing Adapted by Burst Shifting (HABS)

In 2006, Kencl and Shi proposed to combine their previously implemented load

balancing schemes to achieve even better performance [77]. In the combined

method called HABS the result of an AHH load assignment is fed into an active Flow

Classifier and Load Adapter structure of the ABS scheme (see Figure 21). In contrast

to the original ABS scheme presented in [75], all flows may be considered by the

Burst Shifter now [76] and not just the aggressive ones. If the system is in a well

balanced state, the assignment from the hashing-based stage is used. Whenever an

imbalance is detected, the ABS part comes into play and moves loads directly away

from the heaviest-loaded PE to the least-loaded PE, even before the adaptation

routine inherent in the AHH load balancer might react. In addition, the algorithm

insures that flows may only be re-mapped at the beginning of a burst, i.e. when no

other packet from the same flow is already in the system.

Chapter 2 - State of the Art

 77

F
iv

e
-T

u
p

le

E
x
tra

c
tio

n

H
R

W

H
a

s
h
in

g

B
u

rs
t

S
h
ifte

r

A
c
tiv

e
 F

lo
w

Id
e
n

t.

Figure 21: Hashing Adapted by Burst Shifting (HABS)

The combined HABS scheme delivers the best performance of the current schemes

proposed in the prior art with respect to the number of active flow re-mappings and

packet reordering rates. However, the burst shifting algorithm requires maintenance

of a lot of state information, which makes the algorithm somewhat complex for

implementation.

2.4.6. Conclusions

While load balancing schemes have been discussed in the scientific and high-

performance computing area for a long time, they gained attention in the network

processing field with the introduction of network processors that are implemented

as multi-processor system-on-chip architectures. In contrast to other fields, load

balancing for networking applications comes with domain-specific constraints,

which are all reflected in the previously presented load balancing schemes.

The most prominent requirement for network processor load balancing is that

packets, which belong to the same logical connection, should be forwarded in the

same sequence as they arrived. This means, that packet reordering caused by

assigning packets of the same flow to different PEs should be avoided as far as

possible:

– Static hashing-based load balancing insures this sequence by assigning the

packets based on a hashing of the Internet five-tuple, which serves as a unique

flow ID. The drawback of such static schemes is that due to an uneven

distribution of the hash bundles in the total hash space, some processors are

assigned more traffic than others. As a consequence, the available processing

resources of the NP are not utilized to their full potential.

– Adaptive load balancing schemes address this problem by allowing a

reassignment of flows during the system runtime. Obvious benefits are a more

evenly balanced load distribution, at the price of risking a few out-of-order

packets during the load adaptations.

Another important property of stateless network processing applications (which

constitute the majority of network traffic) is the independence of the individual

packets. This independence allows deploying the packet spraying technique that

permits a very uniform distribution of the arriving traffic over the available processor

Chapter 2 - State of the Art

78

resources. However, packet spraying is only proposed as a remedy for overload

situations due to the before mentioned packet reordering issue.

Chapter 3 - FlexPath NP Architecture

 79

3. FlexPath NP Architecture

In the following sections, I will introduce the FlexPath NP architecture that provides

an NP with different on-chip processing paths. These paths comprise processing

with varying degrees of hardware offload - optimized for different networking

applications. After deriving the architectural concept based on an analysis of

networking applications and state-of-the-art NPs, the benefits are shown by means

of analytical analysis and SystemC simulations of a basic FlexPath NP model.

The concept for the packet classification algorithm that is accomplished in the Path

Dispatcher is a crucial element of a FlexPath NP. Because of its importance for the

proposed NP architecture, I have devoted a separate chapter for its detailed

discussion (chapter 4).

3.1. Motivation and Problem Formulation

Figure 22 shows the typical functional unit traversal of state-of-the-art NP

architectures as presented in chapter 2.1.

Packet Context

Packet Reference

M
A

C
M

A
C

M
A

C
F

a
b

ric

L
in

k
 A

g
g

re
g

a
tio

n

In
g

re
s
s
 D

M
A

E
g

re
s
s
 D

M
A

+

T
ra

ffic
 M

a
n

a
g

e
r

F
a

b
ric

M
A

C
M

A
C

M
A

C

Generic NP component

Packet Data

Memory Sub-system

C
P

U

Network

Processing

Complex

C
P

U
C

P
U

C
P

U
C

P
U

H
W

A
c
c
e

l
C

P
U

Figure 22: Functional Unit Traversal in a Generic Network Processor

Depending on the individual design, one or several MAC interfaces provide a

connection to either the physical link attachment(s) or the switching fabric (see also

Figure 2 in chapter 1). The traffic may be aggregated before it will need to be stored

(typically this means implementation of some kind of DMA), in order to make the

Chapter 3 - FlexPath NP Architecture

80

packets accessible to the packet processing units. Then, the packets are transferred

to the central processing complex, which usually consists of a multitude of

programmable elements (PE) - also referred to as CPUs in the following - and

networking-specific hardware accelerators. As discussed in chapter 2.1.3, the

predominant arrangements for the CPUs are parallel processing clusters and

processor pipelines (Figure 4). Hardware accelerators are accessed under control of

the programmable processors. In both processor cluster and processor pipeline

architectures, every packet will traverse a CPU at least once and the exact traversal

pattern of the various functional units (e.g. frequency and type of hardware

accelerator calls, one or several software threads) is determined by software. After

the correct destination interface and scheduling priority has been selected and any

possible additional protocol processing is finished, the packets are forwarded to the

Traffic Manager. Here, the packets are queued to resolve output port contention.

Depending on operational requirements, queuing may be achieved on a coarse

traffic class granularity with several prioritized queues per port or on a fine grained

flow basis. In addition to queuing, the Traffic Manager may also perform traffic

shaping before releasing the packets onto the outgoing links. Virtually all of the

commercial network processors presented in chapter 2.1 feature such a Traffic

Manager - either as an integrated building block in the NP chip, or as a separate

chip - which is tightly coupled to the actual processor chip.

In order to illustrate the operational constraints for an NP system, consider the

following case study for a 10 Gbit/s full duplex device, which is quite representative

for the current mid-range equipment. The 10 Gbit/s may be achieved for example by

connecting the NP to either four OC-48/STM-16 Sonet/SDH, ten 1 Gbit/s Ethernet

or a single 10 Gbit/s Ethernet link. Due to the different protocol overheads on the

physical layers, the following packet rates and inter-arrival times can be derived

assuming that on average the same 10 Gbit/s received from the lines are transferred

over the backplane (i.e. switching fabric) interface.

As we can see from the figures in Table 6, the packet rate is in the tens of Mpps

range for the worst case of shortest size packets. The packet rate is directly coupled

to the event or interrupt rate seen by the central processor cluster. Consequently,

the interarrival time of two consecutive packets seen by the processor complex may

be as low as 20 ns. The Packet-over-Sonet/SDH (PoS) protocol is more efficient for

shortest size IP payloads, thus the requirements for an NP targeting PoS are higher

than for comparable Ethernet deployments.

Chapter 3 - FlexPath NP Architecture

 81

Table 6: Processing Constraints for 4x STM-16 Packet-over-Sonet/SDH or 10 Gbit/s

Ethernet Links2

Transmission

Standard

Packet Size IP Data Rate

(duplex)

Packet Rate Interarrival time

Sonet/SDH, PoS 40 byte IP 15.648 Gbps 48.9 Mpps 20.5 ns

Sonet/SDH, PoS 1500 byte IP 18.904 Gbps 1.576 Mpps 635 ns

Ethernet 40 byte IP 9.524 Gbps 32.06 Mpps 31.2 ns

Ethernet 1500 byte IP 19.506 Gbps 1.626 Mpps 615 ns

According to benchmark results ([85], [86]), simple IP packet forwarding consumes

around 350 instructions per packet, while more complex deep packet processing

applications (e.g. intrusion detection, virus scanning, software-based cryptography)

may require up to 3,000 instructions normalized to the shortest packet size.

Applying these figures to the packet rates in Table 6, up to 17,115 MIPS processing

performance are required for the simple forwarding task and up to 146,700 MIPS for

the most complex deep packet processing applications, if this kind of processing

would have to be applied onto the entire traffic from the PoS links. Assuming a

state-of-the-art embedded processor core with 1.5 GHz clock frequency and an

optimistic CPI of 1.0, this processing power would translate to 12 cores for

forwarding and 98 cores for the deep packet processing task.

Of course, by making use of application-specific hardware accelerators, the latter

figure can be reduced significantly, as the computational density for dedicated

hardware modules is between two and four orders of magnitude better than that for

programmable CPUs [87]. The extensive use of hardware acceleration for deep

packet processing can also be observed in virtually all commercial NP architectures

(see section 2.1.1). Still, the processor cluster has to deal with the high event rates

caused by the incoming packet stream, and the event rate would already scale by a

factor of two, when a packet is once handed over between the CPU and a hardware

accelerator.

The above described case study reveals the following challenges for current NP

architectures:

2 These calculations assume transmission of 40-byte and 1500-byte IP datagrams over PoS

and Ethernet media. Protocol overhead calculations for PoS include SDH overhead, 9 bytes

PPP overhead and 1/128 times payload size for byte stuffing (see also [80]). For Ethernet,

padding for minimum frame size of 64 bytes, preamble and inter-frame gaps are included.

Chapter 3 - FlexPath NP Architecture

82

– Even simple networking applications (e.g. IP forwarding) require many parallel

processor resources in order to cope with the high packet rates observed on links

with bursts of shortest size packets.

– Hardware accelerators help to reduce the number of required processors for

compute-intensive applications (e.g. IPsec, virus scanning) because of their higher

computational density. However, software-controlled accelerator calls increase

the event rate for the controlling CPU by at least a factor of two.

– The processing path of the packets through the NP system is determined by

software. In certain situations, it can happen that the processor receives a packet

and relies on the results of hardware accelerators (e.g. classification or look-up

using a network search engine, decryption of a protected packet, etc.) before the

software can continue with meaningful processing. The overhead associated with

inspecting the packet and immediately dispatching it to another unit in the NP

deteriorates the overall system performance.

Chapter 3 - FlexPath NP Architecture

 83

3.2. FlexPath NP Concept

Based on the challenges described in the previous section, ways to improve the

performance of network processors on an architectural level are sought.

The basic idea behind FlexPath NP is to improve the performance of the system by

most effectively utilizing the available processing resources. Current NP

architectures have already found efficient software and hardware means for the data

path processing of various applications. But the control path, which is currently still

implemented in software, might be improved with the help of specialized hardware

units in several positions of the architecture that help direct packets to the most

suitable processing element (PE). The FlexPath NP architecture [7], proposed in

2005, achieves performance benefits in contrast to conventional NP architectures

through the following measures:

– Introduction of hardware-offload units near the ingress and egress side interfaces

of the NP, which are able to relieve the central processor complex from simple,

recurring tasks such that the intelligence inherent in the programmable resources

is not "wasted" for "routine" tasks.

– The hardware-offload units should be able to handle basic forwarding traffic, such

that the central processor complex can be completely bypassed for those kinds of

packets. This feature is in the following referred to as "AutoRoute" path in

contrast to a CPU path.

– The FlexPath NP provides a classification capability near the ingress interfaces in

order to differentiate between packets of various networking applications. The

classified packets are then directed on a processing path (i.e. traversal sequence

of processing units), that is especially optimized for the application. The simplest

example would be the choice between a path through the central processor

cluster and the AutoRoute path.

– The architecture should feature a packet distribution system, with which hardware

accelerators may be accessed directly, i.e. without involving a CPU. In case of

arriving IPsec packets, the event rate for the CPUs can be decreased, if the

decryption core may be directly accessed by the ingress side hardware. After the

hardware accelerator has finished its work on the packet, a mechanism is needed

to efficiently pass it on to a CPU to finish the packet processing functions. Thus,

packet paths through the NP system may comprise several chained entities

(multi-hop paths).

– In addition, the classification function should be run-time reconfigurable, such that

the system can be adapted for newly developing applications in the field and also

to short-time changes in the traffic mix during system runtime. The classification

Chapter 3 - FlexPath NP Architecture

84

may also be exploited to support advanced QoS features and load balancing

algorithms in the NP that further improve the performance of the system.

Figure 23 shows the traversal of the different functional units in a FlexPath NP with

the before mentioned extensions marked in orange and yellow. While the entire

range of hardware extensions will be presented in detail in the following paragraphs,

I will later focus only on the functional modules in the ingress part of the NP, namely

Pre-Processor, Path Dispatcher and load balancing techniques (orange blocks). The

remaining functions (yellow blocks) are fully elaborated in Michael Meitinger's

dissertation [107]. In our final demonstrator implementation of a FlexPath NP (see

chapter 6), we have included the SmartMem buffer manager developed by Daniel

Llorente [108] as DMA engine (green blocks). The following paragraphs introduce

the most important characteristics of the entire FlexPath architecture.

PEs

C
P

U

AutoRoute

Generic NP component

FlexPath NP component

(focus in this thesis)

FlexPath NP component

(focus in M. Meitinger's thesis [107])

Packet Data

Packet Reference

Packet Context

Network

Processing

Complex

SmartMem component

(focus in D. Llorente's thesis [108])

C
P

U
C

P
U

C
P

U
C

P
U

H
W

A
c
c
e

l

Processing Path ID

M
A

C
M

A
C

M
A

C
F

a
b

ric

L
in

k
 A

g
g

re
g

a
tio

n

P
re

-P
ro

c
e

s
s
o

r

P
a

c
k
e

t C
la

s
s
ifie

r /

P
a

th
 D

is
p

a
tc

h
e

r

In
g

re
s
s
 P

a
th

 C
o

n
tro

l

E
g

re
s
s
 P

a
th

 C
o

n
tro

l

E
g

re
s
s
 D

M
A

+

T
ra

ffic
 M

a
n

a
g

e
r

F
a

b
ric

M
A

C
M

A
C

M
A

C

Memory Sub-system

In
g

re
s
s
 D

M
A

P
a

c
k
e

t D
is

trib
u

to
r

P
o

s
t-P

ro
c
e

s
s
o

r

Figure 23: Functional Unit Traversal in a FlexPath NP

Just like in the generic NP case (Figure 22), it may be assumed that the aggregate of

the line interfaces and the switching fabric interface is combined onto a single high-

capacity data path.

The Pre-Processor is the first FlexPath functional unit after the initial traffic

aggregation (see Figure 23). As the decision about the further processing path in the

system is dependent on the networking application required for each individual

packet, the packets have to be analyzed first. A first step comprises parsing the

header fields and extracting information like the Internet five-tuple (i.e. IP source and

Chapter 3 - FlexPath NP Architecture

 85

destination addresses, layer four protocol number and layer four port numbers). In

addition further differentiating fields like the IP DiffServ codepoint (DSCP), which

contains information about the forwarding priority of the packet, IPsec SPI numbers

or control plane protocols will be recognized. The parsed header fields may also be

used directly to initiate lookups (e.g. IP routing lookup) in an attached hardware

lookup engine (e.g. TCAM, NSE). The collected information about each packet is

assembled into an additional data structure called packet context (dashed blue

arrows in Figure 23) that is accessible by all further NP-internal processing modules.

In addition, it is also possible to perform basic packet integrity checks at this early

stage. If corrupt frames can be detected early, they might either be handed over

directly to the NP control point for further error handling (e.g. generating ICMP

messages) or could be silently discarded without requiring CPU intervention or

wasting memory bandwidth during the ingress DMA. Furthermore, the CPUs in the

processing cluster don't have to perform these checks in software anymore, which

reduces the processing performance requirements per packet.

The Path Dispatcher uses information in the packet context for the classification of

the arriving packets into the different applications and traffic classes, which are

currently supported by the NP system. A software process that is running on the

control plane CPU of the NP keeps track of the current system state and computes

an appropriate classification rule base, which is then applied to the incoming traffic.

Based on the classification result, the packets are dispatched to the pre-configured

processing path in the NP system, by adding the type and sequence of further

processing modules to the packet context. Apart from more or less static rules,

which direct certain traffic types like control packets to the control plane CPU,

discard corrupt frames, etc., dynamic rule table updates can be used to perform

load balancing within the processing complex or dynamically enable AutoRoute for

certain established and well understood traffic types. A default rule should always

be configured, which directs "unknown" packets to the data plane CPU cluster for

further determination of an appropriate action.

After the choice of the further PE traversal in the system, packets and packet

contexts have to be transferred into an appropriate memory for processing. In our

FlexPath demonstrator system we have made use of the SmartMem DMA

architecture ([88], [89], [108]) that supports different storage locations depending on

the further destination of the packet, i.e. for example that CPU-bound packets may

be stored in a local SRAM near the processors, while AutoRoute traffic may be

transferred into external SDRAM, where packets may sit until they are scheduled for

retransmission by the Traffic Manager. The SmartMem generates a reference to the

stored packet data and context called Packet Descriptor (red arrows in Figure 23),

which is further passed through the individual functional units in the NP.

Chapter 3 - FlexPath NP Architecture

86

The different processing paths in a FlexPath NP result in varying processing

latencies. As there is a possibility to change the path for certain traffic types during

system runtime, packets of the same connection may become out-of-order. This

packet reordering has a negative effect on the efficiency of the most dominant TCP

transmission protocol [78]. The reordered packets should therefore be re-sequenced

by the architecture, which is achieved in FlexPath by the Path Control. After the

DMA has happened, the arrival sequence of the incoming packet descriptors is

recorded by the Ingress Path Control. This information is later used by the Egress

Path Control in order to detect reordered packets before retransmission from the

NP.

The packet descriptors are now assigned to the respective functional units (e.g.

CPUs, hardware accelerators or the AutoRoute path) by the Packet Distributor.

Depending on the type of processing element, this might require some amount of

queuing and implementation of a suitable interrupt scheme for the respective types

of processing elements. In case of a multi-hop processing path, the Packet

Descriptor will be sent back to the Packet Distributor after each processing stage

has completed its processing to reach the subsequent processing element.

The network processing complex will usually be implemented by a combination of

generic programmable processors (e.g. embedded RISC cores, ASIPs or

microengines) and a set of hardware accelerators for specific high-performance

operations. As laid out in the prior art discussion in chapter 2.1.3, the programmable

resources may be arranged either in a run-to-completion architecture or also as a

processing pipeline (see Figure 4). With respect to the concept of various

reconfigurable processing paths, the actual arrangement does not play an important

role. In a symmetrical multi-processor cluster, the FlexPath functional modules may

be used as means to perform load balancing or distributing traffic to CPUs, which

are reserved for specific parts of the traffic (e.g. for QoS-sensitive applications or

stateful processing applications). In addition, it is possible to invoke co-processor

engines without prior CPU intervention, if the hardware accelerator is able to

determine the necessary processing steps from the packet context alone. When

regarding the pipelined processor approach, there may be different parallel pipelines

or various entry points into a single pipeline for different application types. Here, the

classification result can be used to choose a suitable pipeline or pipeline stage in

advance.

After having traversed the network processing complex, the packet descriptors

reach the Egress Path Control. Packet sequence is determined on a flow-bundle

basis and out-of-sequence packet descriptors are queued before passing them

onwards to the Traffic Manager.

Chapter 3 - FlexPath NP Architecture

 87

As in every conventional NP, the Traffic Manager performs per flow and/or port

queuing, possibly with several different priority levels to resolve output port

contention and it may implement egress side traffic shaping. After this, the packet

descriptors are handed over to the DMA engine, which fetches the packet data

along with an optional packet context for the Post-Processor.

In the Post-Processor certain basic packet manipulations like MAC address

replacement, TTL decrement, checksum calculation, etc. can be performed. The

functionality has to be implemented thus far, that at least simple forwarding

operations may be completed in order to enable the AutoRoute path. The Post-

Processor operations are encoded in a set of low-level instructions, which are

stored in the packet context that travels along with the packet data. The Post-

Processor releases the completely processed packets towards the transmit side

interfaces of the NP.

Chapter 3 - FlexPath NP Architecture

88

Chapter 3 - FlexPath NP Architecture

 89

3.3. Concept Evaluation

Based on the overview of the functional units of a FlexPath NP, I will first focus on

the expected benefits of the AutoRoute feature for the proposed architecture by

means of an analytical calculation. Subsequently, a trace-based SystemC

performance simulation model of a FlexPath NP architecture is developed and used

to evaluate the system behavior with respect to overall system throughput and

highlighting scalability issues. Reference simulation results illustrate the baseline

performance of a conventional processor-centric NP. These results are then

compared to simulations with partial hardware-offload provided by the Pre- and

Post-Processor units and the AutoRoute feature.

3.3.1. Analytical Evaluation of AutoRoute in FlexPath NP

The AutoRoute functionality, where the entire processing burden is shifted away

from the programmable resources to a pure hardware path, provides the most

significant relief for the processor cluster. In turn, the saved instructions otherwise to

be spent on the AutoRoute packets can be dedicated to other traffic types that are

present in the application mix at the same time. In order to compare the processing

performance of a FlexPath NP with AutoRoute versus a conventional NP

architecture, consider the following case study. Let's assume a conventional NP

architecture with a parallel processor cluster as found in current Cavium devices [26]

with 32 dual-issue superscalar RISC cores operating at 1.5 GHz. This is compared

to a FlexPath NP architecture featuring only 16 or 24 of these cores in the processor

complex, but they are complemented with the AutoRoute functionality (see Table 7).

Table 7: Network Processing Complex Performance Comparison

 Conventional NP FlexPath NP FlexPath NP

CPU clock [f] 1.5 GHz 1.5 GHz 1.5 GHz

Packet Rate [r] 49 Mpps 49 Mpps 49 Mpps

CPU count [N] 32 16 24

CPI 0.5 0.5 0.5

Nominal Performance 96,000 MIPS 48,000 MIPS 72,000 MIPS

Avg. Instr. per packet

(no AutoRoute) [IPP]

1,959 980 1,469

If we assume that a fraction b of the traffic may be forwarded using the AutoRoute

path, the available number of instructions per packet for the remaining traffic share

can be calculated with the following formula, given the parameters from Table 7:

 













brCPI

fN
IPP

1

1
 (3-1)

Chapter 3 - FlexPath NP Architecture

90

The resulting instruction budget IPP is plotted versus increasing AutoRoute shares b

in Figure 24.

100

1,000

10,000

100,000
0
%

8
%

1
5
%

2
3
%

3
0
%

3
8
%

4
5
%

5
3
%

6
0
%

6
8
%

7
5
%

8
3
%

9
0
%

AutoRoute Traffic Share

A
v

e
ra

g
e

 P
ro

c
e

s
s

o
r

In
s

tr
u

c
ti

o
n

 B
u

d
g

e
t

p
e

r
P

a
c

k
e

t

IPP (Conventional NP_32)

IPP (FlexPath NP_16)

IPP (FlexPath NP_24)

Figure 24: NP Processing Performance Comparison Conventional vs. FlexPath NP

As the figures in Table 7 show, the two FlexPath alternatives possess only 50% or

75% of the nominal processing performance compared to the processor-centric

solution. However, by offloading parts of the traffic to the hardware-based

AutoRoute forwarding path, CPU resources are freed and the resulting instruction

budget for the remainder of the traffic increases. The break-even points for the

investigated cases are reached at 25% offload for the FlexPath_24 and 50% for the

FlexPath_16 scenario. Beyond these points the available processing budget is

increasing dramatically; the 3,000 instruction limit for deep packet processing

applications (see section 3.1) is matched at 53% and 68% offload with FlexPath_24

and FlexPath_16 respectively - this is already 1.53 times the average performance

offered by the 32 core reference approach.

The critical question, which remains to be answered now, is: How much traffic can

actually be offloaded to the AutoRoute path in realistic NP deployment scenarios?

There is not a general answer to this question, because the suitability of traffic for

hardware offload depends on the precise application mix and processing

requirements which differ greatly in various locations in the network. As I have

argued before, AutoRoute is only possible for well-understood and stable protocol

stacks, where the processing capabilities remain limited.

Chapter 3 - FlexPath NP Architecture

 91

Plain IP forwarding is a typical representative of an AutoRoute-friendly application.

As the next-hop lookup operation is usually implemented in NSEs (see [53], [54]), it

is easily conceivable that such a lookup may already be invoked by the Pre-

Processor, once the destination address has been retrieved from the packet header.

The other necessary operations such as TTL decrement and checksum recalculation

are covered by the Post-Processor. However, the offload cannot be used, if for

certain reasons the processing of some or all of the traffic requires further inspection

and recording of contents from upper protocol layers (e.g. application-layer

information for application filtering, URL-based forwarding / load balancing, virus

scanning, intrusion detection, etc.). However, these higher layer operations can by

definition be applied only to packets carrying payload above the TCP header. As

such, TCP acknowledgment packets without further payload provide a lower bound

for the AutoRoute traffic share in an IP forwarding scenario. Internet traffic statistics

made available by Sprint ([92]) show that there exist significant numbers of packets

carrying only headers without further payload data. Statistics for 35 traces recorded

in 2004 and 2005 are summarized in Figure 25 below.

0

5

10

15

20

25

30

35

40

45

50

4
0

B
 T

C
P

 P
a

c
k

e
t

S
h

a
re

 p
e

r
T

ra
c

e
 (

in
 p

e
rc

e
n

t)

50% of Traces with least TCP Ack 50% of Traces with most TCP AckTotal Trace Statistics

m=26.4%

s=13.1%

m=38.3%

s=7.1%

m=15.2%

s=5.2%

Figure 25: 40 Byte TCP Packet Shares from Internet Links recorded in 2004/2005

While the percentage of 40 byte packets from all traces is around 26.4%, the value

is changing for different traces between 4.3% and 49.43% with a standard deviation

of 13.1% (central black column). It can be seen, that the total statistic can be

separated into two parts, a set of link traces (red column in the left) exhibit fewer

short packets (average of 15.2% with a standard deviation of 5.2%) and the

remaining traces (green column in the right) contain 38.3% of 40 byte packets on

average with a standard deviation of 7.1%. Another side effect addressed by this

Chapter 3 - FlexPath NP Architecture

92

investigation is the fact, that it is exactly the shortest size packets are well suited for

AutoRoute. These packets otherwise cause the highest event rates onto the central

processor cluster (see Table 6). The remaining packets, which carry more

information may be harder to process (there is more content to be inspected), but

they also arrive with significantly smaller packet rates.

Another case for AutoRoute can be extracted from the wireless networking scenario

described in chapter 2.2.5. Here, we observed that by chaining several network

elements on a common link towards the next-higher hierarchical element, up to 90%

of the traffic would simply be forwarded, while the remaining traffic is subject to

more computationally challenging protocol conversions (see Figure 7, Figure 8).

The same mix of forwarding traffic and gateway traffic can also be observed at

several places within the Internet hierarchy as described in Figure 1 (chapter 1) and

chapter 2.2.6. The vast majority of traffic in the routers within the network will only

have to be forwarded from one connecting interface to another on its way to the

final destination. As laid out before, this forwarding is typically achieved by layer 2

(e.g. carrier Ethernet, ATM) or 2.5 (MPLS) switching. This switching can easily be

assumed to be performed by AutoRoute, if the implementations of the Pre- and

Post-Processors in the FlexPath NP are adapted to the respective protocol stack. In

essence, not significantly more than a simple lookup and a few basic header

modifications are necessary to complete the switching function. However, there will

also be a (smaller) share of traffic, that has reached the final destination within the

current network at the concerned router; and thus has to be forwarded into the

neighboring network (either towards the core or access network). Here, the gateway

functions necessary for protocol conversion (e.g. termination of MPLS forwarding

and conversion to ATM over SDH) and access control or traffic shaping required for

valid entry into the neighboring network have to be performed. These conversions

may not be mapped to dedicated hardware in such a straightforward fashion as the

previously described switching functions, and will therefore be performed with the

use of the programmable processing resources of the NP. Still, the required number

of programmable resources can be dimensioned to provide sufficient processing

power for the fraction of gateway traffic, while the FlexPath NP hardware functions

may route the significant share of switching traffic via an AutoRoute path.

Chapter 3 - FlexPath NP Architecture

 93

3.3.2. Simulative Evaluation of Hardware-Offload in FlexPath NP

As the calculations in the previous section have already highlighted the benefits of

the AutoRoute path in a FlexPath NP on a very high level of abstraction, I would now

like to discuss the presented hardware-offload features offered by the Pre- and

Post-Processor units. In order to get more precise results that also cover contention

effects in multi-processor SoC designs with shared resource access, I will perform

simulations that are able to capture some of the runtime effects, which are hard to

be captured on a pure mathematical level. The following system-level simulation

results have already been published in [82] and [83].

3.3.2.1. TAPES Simulator for FlexPath NP

The system-level simulations will be performed with the TAPES simulation

framework that has been extensively discussed in [81]. TAPES is based on the

SystemC language [8] and models the different functional entities of the system as

abstract modules communicating with each other over defined interfaces. The

model does not implement the functionality associated with each specific module,

but is limited to executing traces describing the interactions of each module with the

outside world. In this fashion, internal processing is abstracted to a simple

processing delay, whereas the communication is performed by transactions across

direct communication interfaces or a model of the central system bus.

A cycle-accurate model of the IBM CoreConnect PLB bus is used in the simulation

that resembles arbitration delays and parallel read or write transactions with address

pipelining and burst transfers like in a real implementation. By using such a highly

detailed model, contention effects caused when several parallel entities perform

concurrent transactions towards the memory modules can be accurately described.

Figure 26 shows the resulting model of the FlexPath NP.

While the TAPES simulation framework in general allows using both artificial traffic

and real traffic traces by importing pcap-files, only artificial traffic has been used for

the subsequent simulations in order to better demonstrate worst case and best case

results.

After reception of the packets, the Buffer Manager model initiates a sequence of bus

write accesses, modeling the DMA operation of the segmented packet. In parallel,

the Pre-Processor model spends a processing delay determined by the packet

length of the actual packet, in order to model parsing of the header fields. After both

the Buffer Manager and Pre-Processor models have finished, the Path Dispatcher

model is activated, which synchronizes the results of the two previous elements (i.e.

the Packet Descriptor coming from the Buffer Manager and the Packet Context

coming from the Pre-Processor). The classification function is abstracted to a few

cycles delay, and the packets can be configured to be routed either to the CPUs or

the Traffic Manager (i.e. AutoRoute). However, this distribution is not based on

Chapter 3 - FlexPath NP Architecture

94

actual header fields, but packets are assigned in a preconfigured sequence. The

Path Dispatcher model also comprises the queuing models of the Packet

Distributor, i.e. packets can be held while the processors are busy working on

previous packets and not reacting on new interrupt notifications from the Path

Dispatcher model.

CPU 1 CPU 2 SRAM SDRAM

SoC BusArbiter

Buffer

Manager

Path

Dispatcher

Traffic

Manager

Pre-

Processor

Post-

Processor

MAC

Traffic Source/Sink

bus_master_if

bus_slave_if

direct_comm_if

Figure 26: TAPES Model of FlexPath NP

The CPUs are executing a processing trace, which models the processing delay and

intermittent bus accesses for both instruction fetches and packet data load

operations. The actual trace will be based on a real-world application profiling,

which is presented in section 3.3.2.2.

After processing, the packets are forwarded to the Traffic Manager model that

contains a number of output queues and performs a simple round-robin scheduling

among packets destined to four output interfaces. The destinations are not chosen

based on packet data, but are randomly assigned.

The Buffer Manager model is again activated to perform the egress side DMA

transactions and the Post-Processor model is reduced to a simple processing delay,

consuming a number of cycles proportional to the length of the packet.

Chapter 3 - FlexPath NP Architecture

 95

3.3.2.2. Calibration of System-Level Model with FPGA Measurements

In order to calibrate the system-level simulation model with real-world measurement

results we implemented a rudimentary network processor on a Xilinx Virtex-II Pro

development board with the functional modules according to Figure 27. It is

important to note that this FPGA design does not implement the full functionality of

the FlexPath NP concept (this will be presented later in chapter 6). However, by

using measured data concerning the DMA operations and by profiling the

forwarding performance of a real networking stack on an embedded PowerPC

processor, we expect to gain more accurate results than by relying on published

benchmarking results and datasheet performance figures.

PowerPC 405

Data/Control

Plane CPU

CoreConnect PLB

Context Generation

Engine

Pre-Processor

Buffer

Manager Post-Processor

Gb-MAC Gb-MAC

Processor Complex Memory

I/O Module

LwIP Stack
SDRAM

Controller

Figure 27: Calibration Prototype Implementation on a Virtex-II Pro FPGA

The Pre-Processor extracts relevant packet fields from the incoming packets using a

set of field extraction units that are controlled by a static FSM that provides

appropriate control for ARP, IPv4, TCP and UDP packets. In parallel to the Pre-

Processor, the Buffer Manager [94], which is a simplified DMA engine used later as

reference to the improved SmartMem architecture ([88], [89], [108]), splits the

packets into 64 byte segments and stores them with a linked-list structure in the

external SDRAM. A packet descriptor is generated that contains the pointers to the

linked list of segments. In this stage, no Path Dispatcher and Packet Distributor

units are available. The main purpose of the system level simulations is to

demonstrate the expected benefits of the FlexPath NP architecture with respect to

the hardware offload and AutoRoute scenarios. This can be achieved by statically

assigning the traffic either to the CPU or the Traffic Manager. Instead, another

module called Context Generation Engine [102] performs the DMA operation of the

extracted header fields and status flags from the Pre-Processor in a data structure

referred to as CII (Context Information Input).

Chapter 3 - FlexPath NP Architecture

96

A single embedded PowerPC is used to execute a slightly adapted form of the

open-source lightweight IP stack (LwIP, [95]), that works together with the DMA

offered by the Buffer Manager and may make use of the CII information generated

by the Pre-Processor. If some of the necessary packet manipulations shall be

performed by the Post-Processor (hardware offload), a CIO (Context Information

Output) data structure may be added that contains the assembler-like instructions

for the Post-Processor along with the respective data fields.

After processing, the CPU sends the packet descriptor back to the Buffer Manager,

which retrieves the packet and an eventual CIO from memory and transmits it over

the gigabit Ethernet MAC through the Post-Processor.

The FPGA development platform features an external 32 MB SDRAM memory that

will be used for packet and context storage and the instructions for the PowerPC.

The linked-list structures of the Buffer Manager are stored in a small on-chip SRAM

(BlockRAM).

The processing traces for the CPU traces have to be derived from an application

profiling of the IP stack. In order to obtain the full instruction count for the packet

processing functions, the interrupt service routine and all forwarding functions were

profiled by sending a single packet through the FPGA prototype. In addition to

stepping through the individual code lines on assembler level, an integrated Xilinx

ChipScope Bus Analyzer core allowed recording number and frequency of cache

line transactions of the PowerPC on the PLB bus and measuring the execution time

of the entire packet processing routine. Table 8 and Table 9 summarize the profiling

results. The figures in the reference solution column refer to the implemented

version of the LwIP stack that makes use of the Buffer Manager as autonomous

DMA engine, but the processing itself is based purely on the packet header, i.e. CII

and CIO is not integrated into the software. As the DMA function is not performed

by the CPU, the amount of instructions that need to be executed for each packet is

independent of the packet size. Although implementations of the Pre- and Post-

Processor units were already available when the calibration prototype was

generated, using the packet context had not been integrated into the LwIP stack.

Therefore, the potential savings effect that may be achieved by performing

operations based on the CII information (integrity checks are already performed in

hardware) and writing a short CIO to offload checksum recalculation, TTL

decrement and replacement of the MAC addresses to the Post-Processor have to

be estimated. The expected figures are found in the right columns of Table 8 and

Table 9.

Chapter 3 - FlexPath NP Architecture

 97

Table 8: Profiling Results of modified LwIP Stack on Calibration Demonstrator

Function Instruction Count (SW

reference)

Instruction Count

Estimate (HW offload)

Entry into ISR 20 20

Data structure initialization 362 362

Update ARP table 535 477

Receive Integrity Checks 523 153

Next-hop Gateway lookup & forwarding 96 86

ARP query and packet modifications 568 470

Transmission of packet descriptor and

freeing of data structure

237 237

Function call returns and end of ISR 80 80

SUM 2,421 1,885

Table 9: CPU Execution Time and Bus Access Patterns

 SW reference Estimate w/ HW

offload

Processing Delay 5,080 clock cycles 3,955 clock cycles

Instruction Cache Fills 41 × 32B 32 × 32B

Packet Descriptor read/write 2 × 16B 2 × 16B

Packet Header read/write 2 × 64B --

Packet Context read/write -- 2 × 64B

CIO descriptor write -- 32b

The estimates performed for the hardware offload scenario show that we are able to

save up to 22% of the originally required instructions. The major contribution (15%)

comes from offloading the receive side integrity checks. As far as the bus

transactions are concerned, the number of instruction cache fills is reduced

proportionally to the number of instructions. There are only minor differences on the

data cache operations, as fetching the CII information and writing back a CIO,

consist of two 32 byte cache line operations each, and this is equal to accessing the

first 64 bytes of the packet data.

When analyzing the bus transactions for the different memory types in the system,

we obtained single access patterns for accessing on-chip SRAM (i.e. BlockRAM)

and an asymmetric 10-4-4-4 cycle burst read and 4-1-1-1 burst write pattern on the

external SDRAM with the given Xilinx memory controller as PLB slave.

Chapter 3 - FlexPath NP Architecture

98

3.3.2.3. Conventional NP Reference Performance and System Scalability

The system model is stimulated by four gigabit Ethernet interfaces, each carrying a

load of 750 Mbit/s, such that the aggregate traffic arriving at the NP is 3 Gbit/s. This

amount of traffic exceeds the forwarding performance of a PowerPC by far, and

therefore allows determining the maximum throughput the investigated architecture

would be able to deliver.

In the following simulations, the SW reference traces are used as presented in the

center column of Table 8 and Table 9. The simulation results for a single CPU

running at 200 MHz, while the rest of the system is running at 100 MHz, directly

correspond to the implementation on the calibration prototype.

0

15

30

45

60

75

90

0 200 400 600 800 1000 1200 1400 1600

Packet Size (B)

N
P

 O
v

e
ra

ll
 T

h
ro

u
g

h
p

u
t

(k
p

p
s

)

1 CPU, 200 MHz 2 CPUs, 200 MHz

1 CPU, 250 MHz 2 CPUs, 250 MHz

1 CPU, 333 MHz 2 CPUs, 333 MHz

FPGA Measurement

Figure 28: SW Forwarding Performance of Reference Scenario

The simulation results shown in Figure 28 yield a single CPU forwarding

performance of 30.77 kpps (kilo packets per second) for 64 byte packets and

27.99 kpps for 1518 byte packets. This compares to measurements taken on the

prototype, which show a decline from 28.95 kpps to 23.95 kpps. While the

simulation mismatch is only 6% for the smallest size packets, the error becomes

larger for packet sizes beyond 256 bytes. The simulations have also been repeated

with a dual CPU setup and scaled CPU frequencies of 250 MHz and 333 MHz.

An interesting aspect is the scaling efficiency of the investigated system by either

increasing the processor clock frequency or adding additional cores:

– When a second CPU is added to the system (i.e. 100% more processing power),

the forwarding performance increases from 30.77 kpps to 58.90 kpps, which is an

Chapter 3 - FlexPath NP Architecture

 99

increase of 91.4%. The resulting scaling efficiency can be computed as 91.4% 

100% = 91.4%.

– In turn, by accelerating the clock frequency of a single CPU by 66.5% to 333

MHz, the forwarding performance is only increasing to 44.74 kpps, which is an

increase of 45.4%. This results in a scaling efficiency of 45.4%  66.5% = 68.3%.

From these results it can be concluded that increasing the number of processor

cores is more efficient than scaling the frequency of the CPUs alone.

In general, the decline in forwarding performance is little for small packets (i.e. small

throughput, as the packet rate is constant) and a single CPU with a slower clock

frequency. This result is also well expectable as the same amount of code has to be

executed for every packet. As the packet size grows (i.e. the system throughput

increases) or additional CPUs are added to the system (i.e. the packet rate in the

system increases), the load on the system bus increases. This leads to more

collisions between the different bus master modules. The longer average access

times result in a performance degradation, especially when considering that the

CPUs need to read 41 cache lines (i.e. 1312 bytes!) from the shared instruction

memory while processing a single packet. These instruction fetches are also

independent from the packet length.

3.3.2.4. CPU Offload Performance Evaluation

In this section, the estimated performance improvement achievable by making use

of the FlexPath hardware offload possibilities is presented. The results of the

conventional baseline NP simulation showed that scaling to more cores works better

than increasing the processor frequency. Consequently, the CPU frequency is fixed

at 200 MHz but the investigations are extended to system setups with four

processor cores in the NP. An additional scenario investigates the effect of moving

the software code from the SDRAM into on-chip SRAM which has a significantly

reduced access latency.

As I have laid out in chapter 3.3.2.2, the hardware offload available through Pre- and

Post-Processor in a FlexPath NP allows reducing the executed number of

instructions by 22%. This should lead to an increase of the NP's forwarding

performance by 28% 










28.1

%221

1
. The simulation results for a single CPU exhibit

a slightly smaller improvement by 27.5% for 64 byte packets and 24.7% for 1518

byte packets (see Figure 29). Again, this may be explained by the fact that

increasing bus loads lead to a deterioration of the system's overall throughput and

stresses the fact that the commonly shared resources (bus, memory) may become

potential bottlenecks.

Chapter 3 - FlexPath NP Architecture

100

0

20

40

60

80

100

120

140

160

180

0 200 400 600 800 1000 1200 1400 1600

Packet Size (B)

N
P

 O
v

e
ra

ll
 T

h
ro

u
g

h
p

u
t

(k
p

p
s

)
1 CPU, FlexPath, SDRAM only 1 CPU, FlexPath, SW in SRAM

2 CPUs, FlexPath, SDRAM only 2 CPUs, FlexPath, SW in SRAM

4 CPUs, FlexPath, SDRAM only 4 CPUs, FlexPath, SW in SRAM

1 CPU, Conventional NP 2 CPUs, Conventional NP

Figure 29: SW Forwarding Performance of FlexPath NP using HW Offload

Moving the software code from the external SDRAM memory into an internal SRAM

increases the single CPU performance by 12.8% for 64 byte packets and even

20.3% for the 1518 byte packets compared to the FlexPath performance with

software being mapped to the external SDRAM.

When scaling the processor complex to four parallel processors, another system

bottleneck is revealed. While the scaling works quite well for smaller packet sizes,

the forwarding rate of the 1518 byte packets is reduced to 81.6 kpps, while it is still

above 150 kpps for the 512 byte packets. The packet rate of 81.6 kpps translates

into a throughput of 990.9 Mbit/s, which is only one sixth of the PLB read or write

bandwidth of 6.4 Gbit/s (64 bit bus clocked at 100 MHz). Assume only the transfer

of packet data to and from the SDRAM memory and neglect all other transfers for a

moment. The Buffer Manager transfers data in bursts of 64 bytes, which means

eight consecutive accesses of 64 bits. Taking into account the memory access

patterns for the SDRAM, such an 8 word burst can be written in 11 cycles, but it

takes 38 cycles to retrieve the same amount of data from the memory. Multiplying

the raw bus bandwidth of 6.4 Gbit/s with the memory read efficiency of
38

8
, we

receive a maximum throughput of 1.347 Gbit/s. When taking into account the other

necessary transfers like processor instruction cache refills and fetching the CII from

the memory (which is in case of 1500 byte packets small compared to the packet

length), the data rate limitation at 1 Gbit/s can be explained.

Chapter 3 - FlexPath NP Architecture

 101

3.3.2.5. AutoRoute Performance Evaluation

Figure 30 shows the performance of a single CPU FlexPath NP using the hardware-

offload capabilities discussed in the previous section for CPU-destined traffic shares

and the AutoRoute path taken by 20%, 40%, 50% and 70% of the incoming traffic.

This performance is compared to the FlexPath NP architecture without AutoRoute

for one, two and four CPUs as discussed in Figure 29 and the baseline conventional

NP with a single processor. For this set of simulations, the CPU code is mapped to

the SDRAM memory.

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400 1600

Packet Size (B)

N
P

 O
v
e
ra

ll
 T

h
ro

u
g

h
p

u
t

(k
p

p
s
)

1 CPU, Conventional NP 1 CPU, FlexPath, 0% AutoRoute

2 CPUs, FlexPath, 0% AutoRoute 4 CPUs, FlexPath, 0% AutoRoute

1 CPU, FlexPath, 20% AutoRoute 1 CPU, FlexPath, 40% AutoRoute

1 CPU, FlexPath, 50% AutoRoute 1 CPU, FlexPath, 70% AutoRoute

Figure 30: Forwarding Performance of FlexPath NP with AutoRoute

Although the AutoRoute path itself should be capable of significantly higher

forwarding rates as a single CPU, head-of-line blocking effects in the Path

Dispatcher model disallow AutoRoute packets passing through the system while the

buffer for CPU-bound packets is filled (backpressure).

However, it can be seen that the forwarding performance of the system with 50%

AutoRoute packets is 5% better than when a second CPU would be added to the

processor complex. As the AutoRoute packets do not add to the system bus load

by the instruction cache accesses associated with software-based forwarding, the

performance decrease previously observed for larger packets is also less significant

than in the previously inspected scenarios. The performance of a system with 70%

AutoRoute and a single processor even exceeds that of a four-processor software-

only forwarding FlexPath NP for packet sizes beyond 128 bytes, with an increasing

benefit for the larger packet sizes.

Chapter 3 - FlexPath NP Architecture

102

But AutoRoute is not only an interesting feature from the point of view of overall NP

throughput. AutoRoute also has a latency advantage over CPU-processed packets,

which is shown in Figure 31 below. In this simulation, the NP is not any longer driven

into overload in order to obtain the peak system throughput; but traffic consisting of

64 byte packets is slowly increased until the processing resources are fully utilized.

1,000

10,000

100,000

1,000,000

10,000,000

6 9 12 15 18 21 24 27 30 33 36 39

Input Traffic (Mbps)

L
a
te

n
c
y

 (
n

s
)

CPU, 0%

CPU, 20%

AutoRoute, 20%

CPU, 40%

AutoRoute, 40%

CPU, 50%

AutoRoute, 50%

Figure 31: Latency Comparison CPU Path vs. AutoRoute Path

As the processing on the AutoRoute path is accomplished in pure hardware in a

pipelined architecture with aggregated line-speed capability, the processing latency

is significantly lower than any CPU-based forwarding implementation could be.

When the maximum throughput of the NP system is approached, the buffers in the

system are filled and the latency of the individual packets rises to a level that is

defined by the maximum buffer size. The maximum latency for CPU-bound packets

is 9.2 ms and for AutoRoute packets it is 6.0 ms. The difference can be explained by

the fact, that AutoRoute packets potentially get queued in the receiving MAC and

the Buffer Manager model - CPU-bound packets have to traverse the additional

FIFO in the Path Dispatcher model in front of the processor complex.

The latency advantage of AutoRoute packets is however depending on the packet

length. As it can be expected, short packets will consume only little DMA transfer

times, and thus the resulting latency will be the lowest. The simulation results

presented in Figure 32 show the simulated processing latencies for increasing

packet sizes for traffic at a fixed rate of 5 Mbps, so that no queuing effects due to

processor overload or output port contention can be observed.

Chapter 3 - FlexPath NP Architecture

 103

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400 1600

Packet Size (B)

P
a

c
k

e
t

L
a

te
n

c
y

 (
µ

s
)

CPU

AutoRoute

Figure 32: Processing Latencies of AutoRoute and CPU-processed Packets over

Increasing Packet Size

In accordance with the results shown in Figure 31, the latencies for 64 byte packets

are 2.5 µs for AutoRoute and 34.9 µs for the CPU path. As the packet size

increases, we can observe a linear increase in the packet latency, which reaches

24.7 µs for AutoRoute and 57.1 µs for CPU-bound 1518 byte packets. Here, the

time needed to store the packet in the system memory and retrieve it from there

approaches the processing time in the CPU, which is independent from the packet

size for a simple IP forwarding application. Therefore, the latency advantage of

AutoRoute packets is reduced from an order of magnitude in case of 64 byte

packets to a factor of two for the maximum length Ethernet frames.

Chapter 3 - FlexPath NP Architecture

104

Chapter 3 - FlexPath NP Architecture

 105

3.4. Conclusions

In this chapter I have derived the concept of FlexPath NP based on observations

about current networking applications. A FlexPath NP appends state-of-the-art

network processor architectures with special hardware units for pre-processing,

packet classification, packet sequence control and post-processing. Apart from

offloading a central, software-programmable processor cluster with the presented

hardware modules, a pure hardware-based processing path through the system

called AutoRoute is proposed.

When comparing the FlexPath approach with other architectures from the state-of-

the-art, the conceptually closest architecture is the SafeNet inline security engine

(see section 2.1.1.2) of which first details were released about half a year after the

first FlexPath publication ([7]). The fact that this architecture is still actively marketed

today underlines that the concept of completely bypassing programmable elements

for certain traffic types is a viable and successful approach. Another "close

competitor" would be the cache-based NP proposed by Hitachi in 2006 ([34]). Here,

the NP also possesses Pre- and Post-Processor units and a classification unit, but

every packet of a certain stream has to go through the programmable units first,

before they may be routed over the hardware path. In FlexPath, AutoRoute may be

enabled for certain traffic types without the requirement of going through the

processor complex with at least one packet per flow.

Initial analytical investigations show the theoretical benefits of combining AutoRoute

and software-based processing in the NP. Several examples of current networking

applications are discussed with respect to a suitable mapping of certain traffic

shares to either on-chip processing path. Traffic shares ranging between 20% and

90% for different applications, which are suitable for hardware-only processing,

make the FlexPath approach relevant enough for further investigation.

In a next step, system simulations have been performed to further investigate the

expected performance improvements that can be achieved with the FlexPath-

specific extensions. The simulation model, which abstracts processing to simple

delays and transactions between the individual system modules, has been

calibrated with a "first shot" implementation on an FPGA-based prototyping

platform. The presented investigations suggest the following propositions:

– Based on the application profiling results of an open-source networking stack,

22% of the instructions could be saved by using context information (CII and CIO)

instead of analyzing and manipulating the packet data directly. The most

dominant relief (68% of the savings) is due to the Pre-Processor, which

completely offloads packet integrity checks to hardware.

Chapter 3 - FlexPath NP Architecture

106

– AutoRoute packets traverse the NP with significantly reduced latency compared

to packets being processed by the CPUs. Pre- and Post-Processors work on the

packets on a hardware pipeline structure, such that only a few clock cycles of

latency will be added during reception and transmission of the packet. The total

latency of AutoRoute packets in the system is dominated by the DMA time

required for storing and retrieving the packet in the system memory and any

possible queuing delays associated with output port contention. As the DMA time

is directly proportional to the packet length, the total latency of AutoRoute

packets in contrast to CPU-bound packets varies from roughly 10% for 64 byte

packets to 50% for 1518 byte packets.

In addition to analyzing the benefits of hardware-offload in the FlexPath NP

architecture, some more general results about the scaling efficiency and potential

bottlenecks in multi-processor systems have been revealed:

– The system interconnect and the common shared dynamic memory for storing

packet data and processor instructions becomes the main bottleneck in a system

with more than two processors. By providing a separate SRAM with single cycle

access patterns for the instruction code, the performance of the system can be

improved by an additional 13% to 21%. This roughly matches the expected

benefits that can be achieved by the hardware-offload features in the FlexPath NP

architecture.

– The SDRAM packet memory was identified as an additional performance

bottleneck. Considering the measured access patterns, the throughput of the

demonstrator system is limited around 1 Gbit/s, although the ingress and egress

packet processing entities would be able to process the packets with a full line

speed of 3.2 Gbit/s assuming a 32 bit data path operated at 100 MHz. The

performance-limiting operations are the read accesses of the buffer manager,

which are constrained by the slow read access patterns of the DRAM.

In summary, the achieved simulation results support the expected benefits of the

FlexPath NP architecture. Consequently, the following two chapters focus on the

classification problem in the ingress path of the proposed architecture and on

advanced load balancing and QoS provisioning techniques in a FlexPath NP.

Chapter 4 - Concept and Implementation of Path Dispatcher

 107

4. Concept and Implementation of Path Dispatcher

The Path Dispatcher is a crucial element in the ingress data path pipeline of the

FlexPath NP architecture and executes the most challenging task - classification of

the arriving packet stream under hard real-time constraints and assigning them to

an appropriate processing path. Because of the importance of the Path Dispatcher

component, I have devoted a whole chapter for this topic, which is structured as

follows:

– Section 4.1 outlines the constraints of the on-chip packet classification problem

found in the FlexPath NP and compares them to existing classification problems.

– Section 4.2 derives the Heterogeneous Decision Graph Algorithm (HDGA), which I

propose to solve the classification problem in the Path Dispatcher.

– Section 4.3 presents simulation results that illustrate the performance of HDGA.

– Section 4.4 focuses on an efficient hardware implementation of HDGA. The

elaboration includes an extensive design space exploration and optimizations of

the HDGA data structures that allow a more efficient implementation.

– Section 4.5 concludes the chapter by summarizing the main characteristics of the

HDGA concept and implementation and highlights the contributions to the state-

of-the-art in packet classification.

The concepts of HDGA have already been published in [56] and [84].

4.1. Introduction and Problem Formulation

The problem of packet classification is not new, and has gained increasing attention

since the advent of newer QoS-sensitive applications in the Internet after the late

1990's. In the prior art chapter 2.3, a number of hardware and software algorithms

have been introduced, which handle the task of separating different service classes

in networking equipment and give them an application-specific treatment with

respect to queuing, forwarding, traffic shaping, etc.

Our proposed FlexPath NP architecture, which improves system performance by

provisioning different processing paths through the NP system, also requires a

packet classification function in the ingress data path pipeline before the packets

reach the Network Processing Complex (see Figure 23 in section 3.2). Arriving

packets are classified according to the specific application classes they belong to

and are then mapped to an appropriate, optimized processing path in the NP. The

mapping should also encompass the problem of load balancing among different

forwarding paths and multiple processors in the central network processing

complex. While the task of the Path Dispatcher unit is formally a multi-field packet

Chapter 4 - Concept and Implementation of Path Dispatcher

108

classification task, it has its own domain-specific requirements and constraints,

which differ significantly from the traditional five-tuple packet classification problem

addressed by prior art schemes.

In the following paragraphs, I will outline the specific environment in which the Path

Dispatcher classification problem is situated and derive an example rule base, which

exhibits the typical requirements found within the FlexPath NP system. The analysis

of these requirements is then used to motivate and illustrate the derivation of the

HDGA classification algorithm (see 4.2) and highlights the important differences to

the problem setting in the prior art.

As we have seen in 3.2 (further implementation details on the ingress data path

follows in 6.2), all packets arriving from the networking or fabric interfaces pass

through the Pre-Processor and Context Assembler units. The Pre-Processor checks

the packets' integrity (correct packet and frame lengths, MAC and IP header

checksums, etc.) and extracts a selection of header fields depending on the

protocol stack of the packet. In addition, these fields are also compared against a

given set of values and depending on the result of such comparisons certain flags

are generated. Examples for these flags could be IPv4, Control Plane Protocol (e.g.,

ARP/RARP, ICMP, IPsec, TCP, UDP, etc.). For each incoming packet, the Pre-

Processor generates only the fields and flags present in the respective packet; this

information is then transformed into a uniform standard representation called Raw

Context covering all possible packet types and protocols by the Context Assembler

unit. The Raw Context is then used in the Path Dispatcher to determine the further

processing path of the packet inside the NP system.

Figure 33 shows the important functional units of a FlexPath NP implementation

with n parallel data plane processors, a single control plane CPU and a hardware

accelerator in the network processing complex. The necessary DMA functions and

the egress path processing elements have been excluded for clarity, as they are not

relevant to the Path Dispatcher function. The full view of all elements is later

described in chapter 6.2. Based on the FlexPath NP system of Figure 33, I will

introduce an example application mix from which I derive the different processing

paths and explain the conditions under which they will be chosen. The application

example should give the reader a good insight into the properties and effects of our

multi-field classification problem and may be transferred to a more general setup in

a straightforward way.

Chapter 4 - Concept and Implementation of Path Dispatcher

 109

Pre-

Processor

Path

Dispatcher

DP-

CPU 0

DP-

CPU 1

DP-

CPU n

CP-

CPU

HW-

Accel

Path

Control

AutoRoute

Lookup

Packet

Distributor

Context

Assembler

Figure 33: FlexPath NP with Data and Control Plane CPUs, Hardware Accelerator and

AutoRoute

The FlexPath NP as described above supports the following path decisions:

– Discard: Packets that are received with invalid checksums (e.g. Ethernet or IP

header) are not forwarded to the processor core but may be silently discarded in

the ingress data path pipeline. This saves both processor resources and bus

cycles by potentially omitting the DMA in SmartMem. The path is chosen by rule 1

in Table 10.

– Control Plane CPU: Packets with expired TTL values may not be silently

discarded as above, but an ICMP error message has to be generated, which is

typically a task allocated to the control plane CPU. In addition, all packets

belonging to the network control and management plane (e.g. routing protocols,

SNMP, etc.) have to be forwarded to the control plane. These packets can be

easily identified by their IP address, which must be the router's own address (i.e.

the Own Flag will be set by the Pre-Processor). This path is chosen by rules 2 and

5 in Table 10.

– Hardware Accelerator: Encrypted packets of terminating tunnel connections may

be sent directly to a decryption core before the payload can be processed

effectively by a data plane CPU. This saves unnecessary CPU interrupts and

increases processing efficiency. These packets may be identified by a set Own

Flag (because the router must be the end point of the IPsec tunnel) in combination

Chapter 4 - Concept and Implementation of Path Dispatcher

110

with an IPsec protocol (i.e. ESP and/or AH) as layer four payload. This case is

represented in rules 3 and 4 in Table 10. Unencrypted packets from specific

networks that require IPsec encryption (cf. provider-based VPN services as

outlined in chapter 2.2.3) may also be separated from the remaining traffic and will

be guided to a specific CPU. This can effectively be seen as a hardware offload of

the necessary IPsec SPD check to the Path Dispatcher and is reflected in rule 10

of Table 10.

– AutoRoute: As discussed in chapter 3.2, packets known to require only plain

forwarding functionality can be offloaded to the AutoRoute path, if a valid next-

hop lookup result could be determined by the Pre-Processor (cf. Figure 33). Rules

7, 8 and 9 in Table 10 allow such an offload for VoIP packets that are assumed to

be marked with a unique DSCP value in the IP header and for plain TCP

acknowledgment packets without further protocol payload. According to the

specified DSCP forwarding priority, these packets are still assigned to different

queuing priorities in the system.

– Data Plane Processors: Essentially all remaining packets would have to be

forwarded directly to the data plane CPU cluster. Here again, a differentiation

according to IP DSCP field values might be useful in determining "high priority"

processing queues and "best effort" queues. In addition, based on further details

of the traffic, different load balancing strategies may have to be applied for

stateful and stateless packet applications, which will be further elaborated in

chapter 5. Rules 11, 12 and 13 in Table 10 reflect a high priority dedicated queue,

flow-preserving hash-based assignment (e.g. HLU, see chapter 5.2.2) to a specific

processor and best effort traffic that can be worked off by any free CPU (e.g.

spraying, see chapter 5.2.1).

The total number of paths that needs to be differentiated in our example is limited to

10, assuming that two priorities (for DSCP = 0 and DSCP > 0) are available for both

AutoRoute and data plane CPU bound packets. As the number of supported service

classes in a specific system can scale up to ten different classes [38] and we can

also conceive systems with several different hardware accelerators, scenarios with

up to 30 different paths may be encountered in a generalized FlexPath NP

implementation, but certainly not many more.

The traffic shares that will be routed to the different functional entities (i.e. hardware

accelerators, processors, AutoRoute) will remain quasi-static during operation of a

system, i.e. the assignment will change only very infrequently. The assignment of

flows to paths will change more frequently with usage statistics and traffic load

variations during system runtime for flow-aware classification rules, which could for

example be load balancing rules or IPsec network-specific rules (cf. rules 10 and 11

in Table 10).

Chapter 4 - Concept and Implementation of Path Dispatcher

 111

Table 10: Example Path Dispatcher Rule Base

Rule Number / Priority Condition Path

1 Invalid_Flag = 1 Discard (0)

2 TTL_exp_Flag = 1 CP-CPU (1)

3 Own_Flag = 1 AND ESP_Flag = 1 Decryption Core (2)

4 Own_Flag = 1 AND AH_Flag = 1 Decryption Core (2)

5 Own_Flag=1 CP-CPU (1)

6 Ethertype != 0x0800 CP-CPU (1)

7 DSCP=2 AND Lookup_Flag = 1 AutoRoute_VoIP (10)

8 DSCP!=0 AND TCPAck=1 AND

IP_Length=40 AND Lookup_Flag=1

AutoRoute_High (11)

9 DSCP=0 AND TCPAck=1 AND

IP_Length=40 AND Lookup_Flag=1

AutoRoute_Low (12)

10 IPsec_network_hit = 1 DP-CPU 0 (20)

11 DSCP=0 AND TCP_Flag=1 AND

Hash(IP5Tuple)_hit=1

DP-CPU (*Hash) (100)

12 DSCP!=0 DP-CPU 1 (21)

13 Default rule Any DP-CPU (30)

The extracted header fields and flags that determine the processing path are

dependent on the application. It is important to realize that not all fields are present

in every incoming packet. As a consequence, the formulation of the individual

classification rules will be quite heterogeneous, in contrast to the classical multi-field

classification approaches where the Internet five-tuple of IP source and destination

addresses, layer four port numbers and layer four protocol field are fixed inputs. For

each path specification or classifier rule, between a single and up to four or five

different header fields and flags may be sufficient, while the total set of possible

fields and flags that have to be inspected over the whole range of applications can

easily grow to an order of 20 to 30. These constraints are compared in Table 11

below.

Table 11: Characteristic Properties of Traditional Single-Field and Multi-Field

Classification vs. Path Dispatcher Requirements

 IP Next-Hop

Lookup

IP Five-tuple Multi-

Field Classification

FlexPath NP Path

Dispatcher

Number of Rules 1,000 - 100,000 100 - 10,000 10 - 100

Number of Actions / Paths 5 - 1,000 3 - 100 10 - 30

Header Fields per Rule 1 5 1 - 5

Header Fields per Classifier

/ Rule Base

1 5 10 - 50

Chapter 4 - Concept and Implementation of Path Dispatcher

112

The Path Dispatcher is to be integrated into our system-on-chip design along with

the other NP building blocks. Consequently, it is an important constraint for the

classification algorithm to be compact enough to fit into a small part of the available

chip area while still achieving aggregated line speed throughput, so that the ingress

hardware processing pipeline structure can be maintained and the packet path

classification does not become a system bottleneck.

As a common characteristic, the schemes proposed in the prior art are all focused

on IP five-tuple classification or subsets thereof. The classification works always on

a constant set of header fields and the matching conditions are either direct

matches, range matches, prefix matches or wildcard parameters (see also 2.3.4).

Range and prefix matches can be effectively addressed by tree or trie structures,

however they suffer from an exponential memory size requirement, if exact matches

have to be determined. Multi-stage approaches have been proposed (e.g. RFC,

HyperCuts, Crossproducting, Grid-of-Tries and DCFL) that first search for matching

entries in single dimensions and then successively combine results to compute the

final classification output. However, a straightforward application of these

approaches to our classification problem with 20 to 30 dimensions would not scale

well. The implementation of 20 to 30 parallel single dimension search engines alone

would be associated with a significant cost and it is unclear what modifications

would be necessary, if the number of dimensions needed in the classification

changes during system operation as a new application may be added to the current

mix.

In the FlexPath NP Path Dispatcher we are dealing with a much more

heterogeneous, but also smaller multi-field classification problem (see also Table

11). At first, much more header fields (referring to higher dimensions according to

the terminology introduced in 2.3.2) are relevant to distinguish the appropriate

processing path within the rule bases. However, both the number of rules and the

possible set of destinations that have to be differentiated in a typical NP system are

significantly smaller than the problem size faced in traditional packet classification,

where thousands to ten-thousands of flows have to be identified and managed. In

the foreseeable future, I don't expect the number of different processing elements to

scale that far in single chip designs.

Chapter 4 - Concept and Implementation of Path Dispatcher

 113

4.2. The Heterogeneous Decision Graph Algorithm (HDGA)

As I have shown in the previous section, rule bases in the FlexPath NP environment

have different constraints than typical five-tuple classifiers found in contemporary

router designs. The known five-dimensional classification problem is generalized

towards more fields and flags that are all extracted by the Pre-Processor unit.

However, none of the rules in the classifier will specify distinct values for all of those

fields, instead only between one and four fields are relevant for each individual rule

(see also Table 10, Table 11).

Especially due to the heterogeneity of the problem setting, a decision tree algorithm

that successively checks individual header fields appears to be beneficial. As values

in certain header fields exclude existence of further fields for the individual packet,

one can assume to successively partition the rule base at each internal tree node

into smaller sets of "eligible" rules until an ultimate resolution is found. Thus, the

semantic dependencies between the different fields or flags help to reduce the

problem size for subsequent steps. This principle can be expected to work in the

most efficient way as long as the individual fields relevant for different networking

applications are mutually exclusive. An additional observation concerning the

problem setting in FlexPath NP is that in most cases the extracted header fields are

only compared to a few distinct values. In traditional firewall applications, a

significant share of the entire numerical range represented by these fields has to be

regarded. In order to reduce the problem size (with respect to the number of input

bits that need to be inspected by the classification algorithm), I propose to perform

the comparison on the header fields and define a Boolean variable for the outcome

of such an arithmetic operation. This Boolean variable can then be used as an input

to a decision graph, instead of using the header fields as in HyperCuts or BDD-

based algorithms known from the prior art.

Although the majority of the Path Dispatcher rule base consists of simple checks on

a various number of header fields and flags, there are some exceptions to this

general observation. One example would be the identification of potential IPsec

packets in the traffic, where the rules may require checking the IP source address to

a range of predefined addresses (see rule 10 in Table 10). This part requires lots of

direct or range match operations on the IP source address field and would not be

handled as efficiently in the decision tree structure (see section 2.3.4). Instead, I

propose to identify these parts of the rule base, which contain a set of expressions

on a unique header field, and evaluate them using a table lookup operation.

Depending on the problem size, one can conceive either a direct table lookup, a

hash table lookup (see 2.3.1.4) or calling an external search engine (see 2.3.1.5). The

result of such a table search (i.e. successful or not) can be used to continue the

search in the tree data structure.

Chapter 4 - Concept and Implementation of Path Dispatcher

114

Inspired by the contribution of Lysecky (2.3.3, [69]), a manually specified rule base

should be minimized before starting to build the classification tree data structure.

Concluding the above paragraphs, I devise a new classification algorithm called

HDGA (Heterogeneous Decision Graph Algorithm) with the following characteristics:

– Start with a manually-specified rule base containing all applications, which have

to be differentiated in the NP system

– Identify homogeneous parts of the rule base (i.e. many comparisons on a single

header field / flag) and mark them for mapping into a table lookup

– Re-formulate the rule base using a Boolean variable notation

– Apply logic minimization to the rule base

– Construct a binary decision tree that is subsequently transformed into a directed

acyclic graph. The DAG consumes less memory than the original tree and the

classification can be accelerated by introducing quaternary decision nodes.

The resulting decision graph is a data structure that can be efficiently implemented

in hardware and can thus achieve a high classification throughput. Results of more

complex classification problems than the "typical" FlexPath cases can be tackled

with established single or multi-field classifiers (e.g. NSEs) and the results are

seamlessly integrated into the Path Dispatcher.

4.2.1. Formulation of Rule Base using Boolean Variables

In order to obtain a briefer representation of the rule base, the individual

contributions in the rule base are reformulated with Boolean variables:

– The flags generated by the Pre-Processor (e.g. "Packet Invalid", "TTL Expired",

"Own Packet", etc.) and the outcome of (hash) table lookup operations (e.g.

"IPsec_network_hit", "Hash(IP5Tuple)_hit") are mapped directly onto such a

Boolean value.

– The other contributions can be generally formulated as expressions on header

fields with masks and arithmetic operations like equality, inequality, smaller than

and greater than (see formalism in chapter 2.3.2, formulas 2-4 through 2-8). A

Boolean value can then be assigned to the outcome of such an expression, i.e.

when the expression is fulfilled by the header field extracted from the current

packet, a 1 or "true" would be assigned, otherwise the Boolean value would

remain 0 or "false".

This transformation reduces the bit-width relevant for the later classification problem

from the width of the extracted header field, which typically lies in range between

Chapter 4 - Concept and Implementation of Path Dispatcher

 115

eight and 32 bits, to a single bit. The list of Boolean variables extracted from the

example rule base is listed in Table 12.

Table 12: Derivation of Boolean Variables from Expressions in Table 10

Boolean Variable Expression Type

A Invalid_Flag = 1 Flag

B TTL_exp_Flag = 1 Flag

C Own_Flag = 1 Flag

D ESP_Flag = 1 Flag

E AH_Flag = 1 Flag

F Ethertype  0x0800 Expression on Field

G DSCP = 2 Expression on Field

H Lookup_Flag = 1 Flag

I DSCP = 0 Expression on Field

J TCP_Ack = 1 Expression on Field

K IP_Length = 40 Expression on Field

L Hash(IP5Tuple)_hit = 1 Flag, Hash-Table Result

M TCP_Flag = 1 Flag

S IPsec_network_hit = 1 Flag, Hash-Table Result

The reduction in relevant bits by regarding Boolean variables rather than entire

header words implies that the Path Dispatcher must contain an arithmetic logic unit

(ALU) that computes the Boolean variable out of the header fields extracted by the

Pre-Processor. By providing a programmable ALU rather than resorting to a hard-

wired implementation, the system as a whole gains a lot of flexibility, such that the

architecture may easily be adapted in the field towards supporting new protocol

stacks without needing to change the design. Provisioning such an ALU into the

classification function is one of the differentiators between HDGA and related

classification algorithms described in the prior art.

In addition to providing logic that computes the Boolean variables based on regular

expressions on Raw Context fields and flags, the ALU also supports integration of

table lookups. Of course, table lookup operations require at least one separate

memory access, and can therefore not be implemented in a pure combinatorial way

as simple comparisons of Context fields. Consequently, traversal of the decision

graph structure has to be halted for the duration of the lookup operation. In return,

the classification algorithm has gained the flexibility to seamlessly include full-

fledged classification engine results into the architecture.

Chapter 4 - Concept and Implementation of Path Dispatcher

116

4.2.2. Matrix Representation of Rule Base and Pre-Processing

The (system-operator specified) rule base is represented by a Matrix Rmanual with

ternary contents true (1), false (0) and don't care (-). The lines or rows of the matrix

correspond to the individual rules, while each column represents one of the Boolean

variables. The processing path IDs, i.e. numbers representing the processing path

associated with each rule, are summarized in vector pmanual.































































































































30

21

100

20

12

11

10

1

1

2

2

1

0

 ;

0

111

1

1111

1101

11

1

1

11

11

1

1
S M LK J I HG F E D C BA

manualmanual
pR

This representation of the rule base differentiates HDGA from prior art classification

schemes that all use one or several bits from the header fields in each decision

node. By defining Boolean values for comparisons of whole header fields to distinct

values, the problem size is reduced from at least 210 bits (concatenation of all

relevant header fields and flags) to a range between 10 and 50 bits.

We can see that certain rules have overlapping specifications that are finally

resolved by the rule's priority, which is equivalent to its position in the rule base.

Thus, evaluation of the rule base is dependent on the order in which the rules are

searched with every incoming packet. In order to obtain rules that may be searched

in an arbitrary order, I propose the following three steps:

– Make the individual lines in the rule base independent by logical-ANDing the

negation of higher priority rules with the current rule specification

– Combine different rules with identical action or processing path ID and apply the

rules of Boolean arithmetic to simplify the terms to a sum-of-products form and

eliminate irrelevant contributions

– Feed the resulting rule base into a logic minimization tool in order to compress the

rule base as far as possible. For the current state of the work I have used the well-

known Espresso algorithm obtained from [71].

Chapter 4 - Concept and Implementation of Path Dispatcher

 117

When executing the above steps, the number of lines in the rule base are first

increased from 13 to 27 during priority extension and then reduced to 24 during

logic minimization. Finally, every entry in the rule base is now independent from

each other and may therefore be evaluated in any order. The resulting pre-

processed rule base is reflected in matrix Rpp and vector ppp.





























































































































































































































1

0

1

20

2

2

10

21

1

21

21

20

20

30

30

30

30

30

30

100

12

11

100

100

 ;

10

1

100

100000

1100

1100

110000

0000000

0010

00000000

00000000

1000000

1000000

00100000

00100000

000100000

000100000

000100000

000100000

011100000

111100000

110100000

0110100000

0110100000

pppp
pR

4.2.3. Construction of a Binary Decision Tree

Using the rule base matrix Rpp, a heuristic method is needed to construct an

optimized binary decision tree that evaluates the pre-processed rule base.

The basic idea is to check one variable (i.e. evaluation of the requested expression)

at a time in each node and then proceed to the left or right child node. In this way,

the rule matrix is iteratively split into two sub-matrices (one for each child node)

where entries with a zero specification for the inspected Boolean variable would be

replicated to the left child, a one specification to the right child and don't care

contributions would have to be replicated to both children. This replication - as

already mentioned in [67] and [68] - may lead to an exponential blowup of the

memory requirements of the decision tree.

Chapter 4 - Concept and Implementation of Path Dispatcher

118

In order to determine at each level, which Boolean variable is the best to be

inspected next, a greedy selection process is chosen based on metrics that are

calculated from the current node's rule matrix and the potential child matrices that

would result from splitting the rule base at a certain variable.

In order to achieve a more compact representation, I append the processing path ID

vector ppp to the rule matrix Rpp and obtain the top-level rule matrix

    
0,00,00,0

pRpRMM
pppppp
 (4-1)

In addition, for each distinct path present in the rule base (i.e. distinct members pi of

the vector ppp), we can define a weight factor wi. The individual wi factors may be

summarized in the weight vector wpp=w0,0. To simplify matters, the path weights are

fixed to be wi=1 i for the following discussion.

For the rule matrix Mn,k, k=0..2n-1 of the current iteration level n, we derive the metric

Pn,k, which denotes the weighted number of different paths covered by the rule

matrix and Cn,k, which denotes the weighted number of rule contributions or rows.

 



1..0,

,

, ikwwww

ikn

kikni

wP (4-2)

 



kni ww

ikn
wC

,

, (4-3)

In our example rule base we obtain P0,0=10 and C0,0=24 for the initial rule matrix M0,0.

For all Boolean variables (BV) in Mn,k, we determine the potentially resulting child rule

matrices BVkn
M

,2,1 (left child) and BVkn
M

,12,1  (right child) and calculate the number of

paths BVknBVkn
PP

,12,1,2,1
 ,

 and contributions BVknBVkn
CC

,12,1,2,1
 ,

 covered in analogy to

formulas 4-2 and 4-3.

Regarding splits on Boolean variables A (first column in M0,0) and I (ninth column in

M0,0) in the root matrix we receive after removing the respective column in the child

matrices:

Chapter 4 - Concept and Implementation of Path Dispatcher

 119

 

1 ;1 ;23 ;9

0
 S M LK J I HG F E D C B

 ;

11

110

2010000

2110

2110

1011000

21000000

10010

211000000

210000000

20100000

20100000

300010000

300010000

3000010000

3000010000

3000010000

3000010000

10001110000

1211110000

1111010000

100011010000

100011010000
 S M LK J I HG F E D C B

,1,1,1,1,0,1,0,1

,1,1,0,1





































































































































AAAA

AA

CPCP

MM

20 ;8 ;14 ;7

110

01

1100

20100000

21100

21100

101100010

10010

201000000

201000000

300000000

300000000

3000000000

3000000000

3000000000

3000000000

10001100000

1211100000

100011000000

100011000000
 S M LK J HG F E D C BA

 ;

110

01

1100

20100000

21100

21100

10110000

21000000

10010

210000000

210000000

201000000

201000000

1111100000
 S M LK J HG F E D C BA

,1,1,1,1,0,1,0,1

,1,1,0,1





































































































































































































IIII

II

CPCP

MM

Now that we have calculated the Pn+1,k,BV and Cn+1,k,BV values for all possible child

matrices of the subsequent iteration level, we have to decide, which of the Boolean

values to use for actually splitting the rule base at level n. In the following, I will

derive several contributions for a weighted cost function that can be used to make

that decision.

Chapter 4 - Concept and Implementation of Path Dispatcher

120

The first optimization target is to avoid an excessive replication of rules to both child

nodes, which means trying to avoid splitting on a Boolean variable with many don't

care values. In addition, we can focus on replication of rule contributions or

replication of different paths. As I have mentioned before, it is not necessary to track

the decision down to a single path contribution, the path dispatching task is

completed when all remaining contributions point to the same destination in the

system. The following two terms can be used as metric for the rule and contribution

replication and yield a value of 1.0, in case no replication takes place (desired

optimum) and are linearly reducing to 0.5, in case of a full replication (worst case, if

the entire column consists of don't care entries):

BVknBVkn

kn
BVkn

PP

P
CF

,12,1,2,1

,
,,






 (4-4)

BVknBVkn

kn
BVkn

CC

C
CF

,12,1,2,1

,
,,






 (4-5)

A second optimization target is to achieve a well balanced decision tree, which

could be achieved when roughly the same number of different path decisions would

be found in both child matrices. The benefit of a balanced decision tree is that

pathological cases, like a linear search can be avoided, and a more uniform decision

time across all possible processing paths may be achieved. The term

BVknBVkn

BVknBVknBVknBVkn

BVkn

PP

PPPP
CF

,12,1,2,1

,12,1,2,1,12,1,2,1

,,










 (4-6)

has its maximum value of 1.0, if the left and right child matrices contain the same

number of paths and converges towards zero with increasingly unbalanced splits. A

value of zero is achieved, when all paths are represented in a single child and none

in the other one. This case would however not lead to a valid decision tree and must

therefore be excluded from the tree construction algorithm.

In the following it is important to find out, which of the two optimization criteria

formulated above leads to better decision trees with respect to crucial performance

metrics such as decision tree size and average and maximum search time. The

individual terms presented above are combined into a weighted sum, and trees can

be constructed based on the resulting column fitness metric:

BVknBVkn

kn

BVknBVkn

BVknBVknBVknBVkn

BVknBVkn

kn

BVknBVknBVknBVkn

CC

C

PP

PPPP

PP

P

CFCFCFCF

,12,1,2,1

,

,12,1,2,1

,12,1,2,1,12,1,2,1

,12,1,2,1

,

,,,,,,,,





















 

(4-7)

Chapter 4 - Concept and Implementation of Path Dispatcher

 121

Let's reconsider the situation at the root node with the two columns A and I as

described before. For a split at Boolean variable A (i.e. checking the Invalid_Flag

from the Pre-Processor), the column fitness contributions are computed as follows:

  









 12.01

123

24

19

1919

19

10
,0,0 A

CF (4-8)

As we have seen before, there is no replication in the rule base, leading to CF and

CF terms of 1 and the asymmetrical splitting leads to a CF term of only 0.2.

Regarding Boolean variable I, which means comparing the extracted DSCP field

against zero, we receive:

  









 71.093.067.0

2014

24

87

8787

87

10
,0,0 I

CF (4-9)

which reflects the more even split between the paths with its CF metric of 0.93, but

the replication is punished with the CF and CF values of 0.67 and 0.71

respectively.

The next step is to find out practical values for ,  and , such that the resulting

tree best achieves the requested performance criteria, namely compact storage

space and low average and worst case search times. As it may be desirable to

restrict the computation to integer arithmetic, large integers are used for the

weighting factors ,  and . As the CF and CF terms are optimizing towards the

same criterion and we focus on resolving the processing path, the CF term should

be seen as dominant, with the CF term tipping the result into the final direction, if

the weighted sum CF+CF yields the same column fitness values for several

Boolean variables. I have performed a set of simulations for different weighting

factors on artificially generated rule bases (details on rule base generation are

described in section 4.3), which are shown in Figure 34 and Figure 35. Across all

simulations, is fixed at 5.

Chapter 4 - Concept and Implementation of Path Dispatcher

122

1

10

100

1,000

10,000

100,000

10 12 14 16 18 20 22 24 26 28 30 32 34 36

Number of Independent Boolean Variables

N
u

m
b

e
r

o
f

N
o

d
e
s

(α=1000, β=5)

(α=500, β=500)

(α=5, β=1000)

Figure 34: Decision Tree Size for Different - and -Weights (=5)

0

5

10

15

20

25

30

35

10 12 14 16 18 20 22 24 26 28 30 32 34 36

Number of Independent Boolean Variables

T
re

e
 D

e
p

th

Max (α=1000, β=5)

Max (α=500, β=500)

Max (α=5, β=1000)

Avg (α=1000, β=5)

Avg (α=500, β=500)

Avg (α=5, β=1000)

Figure 35: Maximum and Average Decision Tree Depth for Different - and -Weights

(=5)

The three investigated scenarios in the simulations are heavily overweighting CF

(=1000, ==5), even weighting between CF and CF (==500, =5) or heavily

overweighting CF (==5, =1000). When CF dominates, decision trees with

relatively small memory footprints are obtained, but the depths are quite unevenly

distributed. When CF dominates, the trees are better balanced, but the required

storage space grows significantly and the worst case search time (i.e. tree depth) is

not improving. Even worse, in addition to the largely inflated storage requirements,

also the average tree depth obtained by equally weighting all leaf nodes in the

Chapter 4 - Concept and Implementation of Path Dispatcher

 123

decision tree is larger than in the CF dominated trees, and the average depth is

only marginally smaller than the worst case depth.

From the above results I conclude that optimizing for minimum replication is the only

meaningful approach, as both memory requirements remain within limits and a

better average case search time can be achieved. However, CF should not be

completely neglected, as it may still be used to determine a better choice when two

columns share the same CF and CF metric, and cases where CF=0 have to be

excluded. For the following parts of the chapter, I have used the column fitness

function with =1,000, =5 and =5. Weighting of individual paths in the calculations

of the split number of paths and contributions has not been used until now, i.e. wi=1

i, but could be employed in order to guarantee that certain paths, which might be

relevant for a majority of the traffic or belong to extremely critical applications, are

evaluated faster than the remaining destinations.

In the example rule base concerned, CF0,0,A has the largest column fitness, so that

the root node splits the rule base along Boolean variable A. The matrices and

metrics required for the subsequent level of the decision tree are derived as follows:

 M1,0=M1,0,A (4-10)

 M1,1=M1,1,A (4-11)

 P1,0=P1,0,A (4-12)

 P1,1=P1,1,A (4-13)

 C1,0=C1,0,A (4-14)

 C1,1=C1,1,A (4-15)

Construction of the decision tree is continued in an iterative fashion on the child

matrices as defined above. In summary, the decision tree can be constructed as

follows:

– 1: Obtain root rule matrix as output of rule pre-processing M0,0

– 2: Compute P0,0 and C0,0 according to formulas 4-2 and 4-3

– 3: Iterate over all columns in Mn,k except for the last (i.e. inspect all Boolean

variables) and derive the two child matrices Mn+1,2k,BV and Mn+1,2k+1,BV resulting when

the current node splits the rule base by inspecting the Boolean variable BV

– 4: For both child matrices and every possible value of BV, compute Pn+1,2k,BV and

Cn+1,2k+1,BV

– 5: For every value of BV, compute the column fitness CFn,k,BV

Chapter 4 - Concept and Implementation of Path Dispatcher

124

– 6: Find the Boolean variable BVsplit, that yields the highest column fitness

 0: ,,,,,,
 BVknBVknBVknsplit

CFBVCFCFBV
sp lit


 (4-16)

– 7: Assign the chosen child matrices Mn+1,k for the subsequent iterations and

compute their Pn+1,k and Cn+1,k values according to formulas 4-10 through 4-15

– 8: Recursively iterate steps 3 through 7, until the tree is completely built. If a child

matrix in any intermediate step contains only a single path ID, the path ID is

memorized in the tree as a leaf node instead of the child pointer.

Figure 36 shows the complete resulting binary decision tree constructed from the

example rule base. Ovals represent the tree nodes, in which the operation

associated with a Boolean variable according to Table 12 is evaluated. The

rectangles represent the packet paths or action identifiers that are stored inside the

leaf nodes instead of the pointers to further decision tree nodes. The path identifiers

are colored differently according to the application-specific processing paths.

Figure 36: Binary Decision Tree for Example Rule Base

The resulting tree has a maximum depth of 12, i.e. 12 cycles worst case search

latency assuming that a memory access and the comparison may be executed

within the same cycle. This calculation neglects additional hash table lookup

Chapter 4 - Concept and Implementation of Path Dispatcher

 125

latencies in the specially marked "L" and "S" nodes. The average depth is 8.58 and

the tree consists of 39 nodes. Due to the locally optimal splitting metric (greedy

selection algorithm), the order in which the Boolean variables are evaluated may

differ in various sub-trees. In addition, it is interesting to realize that the maximum

number of inspected Boolean variables is 12, which is two less than the total

number of Boolean variables present in the rule base. This effect may be explained

by the fact that the Boolean variables' values are not independent for a given

packet. The proposed decision tree algorithm helps to evaluate only relevant header

fields for each specified path for a distinct application and differentiates HDGA from

methods like crossproducting ([60], [63], [65]), where all possible evaluations have to

be made before being able to resolve the classification problem.

4.2.4. Transforming the Tree into the HDGA Decision Graph

Although the binary decision tree structure presented in Figure 36 could already be

used for rule base evaluation, there is still potential for further optimizations.

A

mB

A

B B

AB

mm

AB

A

B C

A

B C

nC

nC

nC mD

nC mD

A

B

C

C

D nm

nm

A

B

CD

nm

Figure 37: Possible Decision Tree Optimizations: DAG Construction (left) and

Quaternary Decision Nodes (right)

Foremost, there exist several isomorphic sub-trees in the decision tree, i.e. both the

splitting variable in the nodes and all child nodes and path identifiers are identical. In

order to save memory for the search structure, I propose to store these nodes only

once and redirect all child pointers of isomorphic sub-trees to the first occurrence in

the tree. This optimization, which is also reflected in the left part of Figure 37,

transforms the binary search tree into a directed acyclic graph (DAG), which shows

some amount of similarity with the binary decision diagrams presented by Prakash

et.al. in [66] (see Figure 17 in chapter 2.3.2.6).

In their original form, BDDs are used as canonical forms of representing Boolean

functions that perform a mapping from a multi-bit input to a single true/false value

symbolized by exactly two terminal nodes in the graph. The requirement of being a

function with only a single Boolean value had already been lifted by Prakash in his

Chapter 4 - Concept and Implementation of Path Dispatcher

126

routing table algorithm. My decision graph is used to obtain the processing path IDs

associated with certain functional elements in our NP design, which can also be

symbolized with integer numbers and leads to a larger set of terminal nodes rather

than a single Boolean value. However, due to the non-uniform variable ordering, the

constructed DAG resembles a free BDD. In addition, the operations at each node in

the graph are not based directly on individual header bits, but may also rely on

results of whole header field comparisons. This scheme is more effective as long as

only a few distinct header values are relevant for larger header fields. By merging the

isomorphic sub-trees and constructing the DAG, the number of nodes in our

example rule base can be reduced by 7.7% to 36 nodes.

A second optimization is conceivable, which reduces the average and worst case

search times and thus facilitates a better scaling towards larger rule bases. By

extending the storage space for the individual tree node entry and provisioning

additional comparator logic for parallel evaluation of a second Boolean variable, it is

possible to execute two decisions within a single clock cycle in a quaternary tree

node. However, this will only be effective if the variables in both children of the

current node are identical or contain no further splits but resolve the processing

path (right part of Figure 37).

I have also made experiments that try to generate a pure quaternary decision tree

with a modified column fitness function, which attempts to optimize directly for the

two best-fitting Boolean variables. However, these experiments did not deliver

competitive results. In contrast, it turned out to be the better choice to construct a

binary decision tree with the before presented greedy algorithm, and then try to

merge nodes from two adjacent levels in the tree where possible according to the

principle shown in Figure 37.

An additional constraint has to be considered with respect to merging nodes that

execute hash table lookups rather than arithmetic operations on the Raw Context

fields. As I have mentioned before, the hash table lookups need some additional

clock cycles for memory accesses and the evaluation of the Boolean variables in the

ALU of the Path Dispatcher has to be stalled. In order to simplify the implementation

of the Path Dispatcher, it appears to be reasonable to execute hash table operations

only in binary decision nodes.

The principle of merging several adjacent binary decision nodes into a quaternary

decision node might be extended to even more levels, yielding 8-fold or 16-fold

decision nodes. However, the additional cost in the hardware implementation (more

comparators and a significantly more complex control and branching logic) is not

justified for rare occasions where three or four nodes on consecutive levels in the

original decision tree inspect the same Boolean variables. Such a behavior would

contradict the properties of the free BDD structure, which is generated by our

Chapter 4 - Concept and Implementation of Path Dispatcher

 127

heuristic splitting metric. The further parallelization would work in a straightforward

way only for the ordered BDDs as they have been used and presented by Prakash

et.al. [66]. However, Prakash hinted in his own work, that such an ordered BDD

suffers from excessive memory consumption; however his proposed algorithm was

not able to construct free BDDs.

An important observation is that although the implementation of quaternary

branching nodes comes at a cost of additional comparator and branching logic and

larger memory for the quaternary tree node, the total storage space for a given rule

base does not change: two binary decision nodes with one Boolean variable

specification and two pointers consume as much memory as a single quaternary

node with two Boolean variable specifications and four pointers.

Figure 38: HDGA Decision Graph with Binary and Quaternary Nodes

Figure 38 shows the final HDGA decision graph obtained from the initial binary

decision tree by DAG construction through consolidating isomorphic sub-trees and

merging suitable binary nodes into quaternary decision nodes. The final decision

graph uses only 26 nodes (17 binary and 9 quaternary nodes, consuming the same

amount of memory as 35 binary nodes). The maximum depth is reduced to nine

levels (-25% compared to the tree of Figure 36) and the average depth is 5.61 levels

(-35%).

4.2.5. Updates of the Rule Base and HDGA Data Structures

An important aspect in every classification algorithm is its behavior concerning

updates of the rule base during system runtime. As the HDGA data structure

Chapter 4 - Concept and Implementation of Path Dispatcher

128

presented in the previous sections consists of several components, I will highlight

the updatability of each of them separately.

The decision tree is derived from the pre-processed rule base and the sequence, in

which certain packet header fields or flags are inspected, is determined by a greedy

selection algorithm that tries to optimize the storage space and search time

complexity of the entire search structure. When new rules are added to the rule base

that refer to a new protocol class, it is possible that the respective rules are finally

mapped into a distinct sub-tree of the decision graph, which can be preconfigured

into the tree memory and activated by setting a pointer in the respective parent

node in a single atomic operation. However, due to the optimizations that are

performed on the initial rule base, such a behavior cannot be guaranteed under all

circumstances and it may be necessary to construct a new search graph in a

shadow memory and then perform an atomic switch from one graph to another. This

would pose a requirement of a sufficiently large memory in the Path Dispatcher

implementation to allow holding several configurations in parallel. As additions of

new protocols (with additional relevant header fields and thus new Boolean

variables) are not very frequent, it might also be possible to assume that such an

update could be carried out offline, while the processing elements also need to be

supplied with new software code.

Another situation refers to parts of the rule base that consider flow based

specifications for certain applications (e.g. the list of currently active IPsec

connections) or load balancing. As I have mentioned before, these rule base

contributions are mapped to table lookup operations or even external classification

engines. In contrast to the before mentioned decision graph, these table contents

can be updated easily during system runtime, if the table memories are

implemented in dual-port memory technology.

By separating the contributions of the global rule base into quickly changing parts,

which are mapped to lookup tables, and quasi-static parts, which are mapped to a

decision graph data structure, the system is capable of supporting frequent updates

of flow-aware rules (e.g. IPsec or load balancing) without hurting the overall

classification throughput.

Chapter 4 - Concept and Implementation of Path Dispatcher

 129

4.3. HDGA Performance and Scalability

In order to quantify the scaling properties of HDGA and gain objective numbers for

comparing it to schemes from the prior art, a set of simulations with randomly

generated, i.e. artificial, rule bases of different size has been performed. These rule

bases are then used to evaluate the range in which storage requirements and

latencies vary. Randomly generated rules will show less statistical dependency than

real-world rules, and therefore they exhibit less structure that may be exploited by

both the logic minimization and during construction of the decision graph.

The following simulation results show critical performance figures of the proposed

HDGA decision graphs for synthetic rule bases with 10 and 20 processing paths.

Each rule consists of the conjunction of up to four different Boolean variables in

accordance with the observations made in Table 11 (section 4.1). The variables are

drawn using independent uniformly random distributed variables out of a set of

between 5 and 35 Boolean variables. Therefore, the rules do not reflect the

correlation present in real world classifiers and offer less mutually exclusive

structure, which can be exploited in the graph. The shares of four-variable to three-

variable to two-variable to single-variable rules are 15% to 20% to 35% to 30%.

The individual rules are assigning the incoming packets to 10 or 20 different paths,

which are again randomly chosen. The resulting figures present average values

computed over 100 randomly chosen rule bases for each data point; worst case

latencies in Figure 39 reflect the maximum depth of the worst case rule base from

the set of 100. In general, the generated decision graphs for the synthetic rule bases

tend to become wider and more balanced than the decision graph for the presented

real-world example (Figure 38).

Figure 39: HDGA Average and Worst-Case Search Time Performance

The search time performance figures presented in Figure 39 show that the average

decision graph depth (solid surface) is typically half as much as the worst case

depth recorded for any of the simulated cases (mesh grid). In addition, the worst

Chapter 4 - Concept and Implementation of Path Dispatcher

130

case depth is always less than the maximum number of Boolean variables present in

the regarded scenarios.

Figure 40: HDGA Average Memory Requirements

With respect to the memory requirements of the HDGA decision graph, an

exponential increase can be observed with increasing number of Boolean variables

in the rule base (Figure 40). Increasing the number of rules and keeping the number

of Boolean variables constant leads to a smaller effect on the storage space

requirements. The maximum storage needed for a rule base with 100 rules over 35

Boolean variables is in the order of 750 kbit; this figure corresponds to roughly 3,600

quaternary decision graph nodes and could be mapped into 42 BlockRAM

memories of a current Xilinx FPGA.

Figure 41 quantifies the effectiveness of merging isomorphic sub-trees from the

initially constructed decision tree and obtaining a DAG. While only about 10% of the

memory can be saved for very small rule bases on few Boolean variables, the

compression ratio increases to about 40% for rule bases constructed with 20

Boolean variables and to over 50% for rule bases with 35 Boolean variables.

Figure 41: Memory Requirement Reduction by Merging Isomorphic Sub-Trees

Chapter 4 - Concept and Implementation of Path Dispatcher

 131

Figure 42: Latency Reduction by Using Quaternary Decision Nodes

An opposite behavior can be observed when analyzing the effect of using

quaternary decision nodes in addition to binary nodes to save time (Figure 42). Here,

the largest saving effect with roughly 30% can be observed for rule bases with very

few Boolean variables, for problem sizes beyond 30 Boolean variables the savings

are reduced to less than 20%. Still, 15% fewer cycles on a 30 cycle depth evaluate

to four cycles, and four cycles can be an important contribution in deciding whether

the resulting decision graph meets real-time requirements in the presented scenario,

where packet inter-arrival rates are in the order of a few tens of nanoseconds in the

worst case (see Table 6).

100

1,000

10,000

100,000

1,000,000

10,000,000

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Number of Rules

G
ra

p
h

 S
iz

e
 (

b
it

s
)

15 Boolean Variables, 15 Proc. Paths 30 Boolean Variables, 25 Proc. Paths

Memory Size in FPGA Prototype Implementation

Figure 43: HDGA Decision Graph Size Scaling

Figure 43 focuses on the scaling behavior of HDGA decision graphs with increasing

number of rules in the rule base. The first simulation (blue line) refers to a scenario

with 15 Boolean variables and 15 processing paths. The resulting size of the

Chapter 4 - Concept and Implementation of Path Dispatcher

132

decision graph is growing during addition of the first 50 rules. After this point

increasing overlaps in the rule base lead to a saturating effect that eventually

reduces the required amount of storage. In addition to the averaged memory

requirements of 100 rule bases, the variation range from smallest graph to largest

graph is shown. As the presented algorithm is highly data dependent, variations of

up to two orders of magnitude can be observed on multiple simulation runs

executed with the same input parameter characteristics. Still, the total amount of

memory needed is below the (minimally) chosen memory size for the FPGA

demonstrator (see also 4.4).

For the larger scenario with 30 Boolean variables and 25 processing paths a similar

behavior can be observed. Here, the saturation is reached after about 70 rules in the

rule base and due to the more complex classification problem a higher amount of

memory is needed.

Chapter 4 - Concept and Implementation of Path Dispatcher

 133

4.4. Implementation Issues

In the previous sections, I have derived the HDGA packet classification algorithm to

solve the packet classification problem faced in the Path Dispatcher. Simulation

results have proven the suitability of the chosen algorithm for the given task. Now,

an efficient implementation of HDGA is needed. I will start by presenting a

straightforward implementation of HDGA. Subsequently, I can show that a few

changes in the algorithms' data structures lead to a significantly more area efficient

architecture that is able to maintain maximum classification throughput and is

adaptable to changes in the Raw Context format by simply modifying the HDGA

memory contents. Finally, synthesis results for the Path Dispatcher unit for an

FPGA-based demonstrator system (which will be featured in detail in chapter 6) are

shown.

4.4.1. Path Dispatcher Interfaces

Before elaborating on the details of an efficient hardware implementation of HDGA,

the following figure gives a top-level overview of the Path Dispatcher unit including

its external interfaces in the context of our FPGA-based demonstrator platform (see

chapter 6).

Context Assembler

Context Memory

G
ra

p
h

 N
o

d
e

 M
e

m
o

ry

Hash Table Lookup

Translation Memory

SmartMem

Classification

Controller

Path Dispatcher

ALU ALU

Raw Context

Context Field / Flag

Context Field

Graph Node

Information

Addr

Addr

Classification Result

AddrStart

Start

Boolean Variable Boolean Variable

Boolean VariableStart Addr

HDGA Core

PLB LIS-IPIF Slave

Bus Attachment

FSM
C

o
n

fi
g

.
A

d
d

r

C
o

n
fi
g

.
D

a
ta

Figure 44: Top-Level Block Diagram of Path Dispatcher

Chapter 4 - Concept and Implementation of Path Dispatcher

134

On a very high level of abstraction, the architecture of the Path Dispatcher can be

captured as shown in Figure 44. As discussed in the FlexPath concept section

(chapter 3.2), the Path Dispatcher implements the packet classification function in

the NP ingress data path pipeline. It receives the extracted packet header fields and

flags from the Context Assembler unit (described later in chapter 6.2). The final

classification result is in turn handed over towards the SmartMem DMA engine and

further downstream processing pipeline stages.

The Raw Context is transferred in the data processing pipeline in parallel to the

packet data on a 32 bit data path that achieves the same throughput as the packet

data. However, while packets may have largely varying lengths (in case of Ethernet

this ranges from 64 bytes to 1518 bytes), the context is fixed for our implemented

protocol range to 14 words, which is less than the minimum Ethernet frame size of

16 words. Thus, the transmission of packet context is real-time capable for all

possible packet arrivals. In addition, the 16 word minimum frame size can also be

translated into a 16 clock cycle limit for hard real-time guarantee of the HDGA

classification algorithm, i.e. for any arriving packet pattern, real-time constraints are

met if the deepest HDGA graph can be worked off within 16 cycles.

The classification algorithm needs to have random access to all context fields and

flags, i.e. classification can only be started, when all fields of the current packet

have arrived in the Path Dispatcher. This requires at least a double buffering

structure (see Context Memory in Figure 44), where one context can be received

from the Context Assembler, while the second context is used for packet

classification. However, if a larger buffer would be implemented, it is also possible

to allow a more relaxed timing for average case situations, where classification of a

single packet type may take longer than the previously described 16 cycle limit, if

such a packet is either followed by a larger packet, or subsequent packets are

classified in less than 16 cycles. This would also be interesting in cases, where the

classification takes less time than the 14 cycles needed to transfer a single packet

context from the Context Assembler to the Path Dispatcher. A larger buffer may be

pre-filled and the backlog can be worked off when an arriving packet leads to a

shorter than worst-case decision graph. Assuming average case latencies and

average packet size in realistic traffic mixes, a good classification performance may

still be achieved also for significantly larger problem sizes. The simulation results

presented in Figure 35 and Figure 39 suggest that the average-case graph depth in

HDGA is on average between 50% and 80% of the worst-case depth.

At the heart of the Path Dispatcher the HDGA classification algorithm has to be

implemented. The relevant context words for the current decision graph node have

to be transferred to two ALUs, which each compute the current Boolean variable by

masking the context word and performing a comparison against the predefined

value. The Boolean variables are then forwarded to the Classification Controller

Chapter 4 - Concept and Implementation of Path Dispatcher

 135

state machine, which selects the next-level decision graph node or concludes the

search process, if the final classification result is resolved. In order to achieve the

highest possible classification speed, this calculation has to be performed within a

single clock cycle. The Graph Node Memory, which contains the HDGA data

structure, acts as register stage in an otherwise entirely combinatorial data path. In

addition, Hash Table lookups can be initiated from the Classification Controller.

Hash Table lookups require an additional memory access (apart from accessing the

Graph Node Memory) which can not be reasonably assumed to be performed within

the same clock cycle as the calculation of the Boolean variables and the resulting

child node pointer. In addition, treating the hash table lookup as an additional

functional element with its own clocked interface allows to integrate the results of

other (possibly off-chip) classification engines for full-fledged five-tuple classification

into the Path Dispatcher design.

The decision graph algorithm will at first only provide an ActionID, which determines

the further processing in the device. As downstream elements need more precise

information like queuing priority, processing latency class, queue ID for the Packet

Distributor and information about whether CII or CIO has to be generated for the

current packet, an additional lookup in the Translation Memory is used to retrieve

this kind of information. Storage of a new Raw Context arriving from the Context

Assembler and performing the lookup in the Translation Memory plus the

handshaking with the SmartMem unit can be performed in separate pipeline stages

overlapping the actual HDGA classification task.

The individual processing stages of the ingress NP pipeline use a simple

handshaking protocol with Ready / Start signals in order to pass control over the

individual packets from one stage to another and provide a backpressure

mechanism for accommodating different processing latencies between the

individual stages.

4.4.2. Design Space Exploration for HDGA Implementation

4.4.2.1. Constraints on HDGA Graph Evaluation

Before deciding on an implementation of the buffers and the precise structure of the

HDGA core, consider the decision graph data structure and the classification

process under the assumption of a single clock cycle per decision tree node. A tree

structure, as well as the presented decision graph, may be constructed from

recursively chaining the individual nodes with data fields as presented in Figure 45.

Chapter 4 - Concept and Implementation of Path Dispatcher

136

Binary Node (93 bit):

CTX_A (4 bit)

Mask (32 bit)

Value (32 bit)

Operation (3 bit)

Ptr/Action0

(11 bit)

Ptr/Action1

(11 bit)

Quaternary Node (186 bit):

CTX_A0 (4 bit)

Mask_0 (32 bit)

Value_0 (32 bit)

Operation_0 (3 bit)

Ptr/Action00

(11 bit)

Ptr/Action01

(11 bit)

CTX_A1 (4 bit)

Mask_1 (32 bit)

Value_1 (32 bit)

Operation_1 (3 bit)

Ptr/Action10

(11 bit)

Ptr/Action11

(11 bit)

Figure 45: Straightforward HDGA Node Contents

The HDGA nodes can be logically separated into two parts:

– The first part contains information about how to compute the Boolean variable

within each stage. This includes a reference to the relevant context word (4 bits

are needed to address the 14 words of the Raw Context), 32 bit values for

defining a mask and comparison value and three bits for selecting the appropriate

comparison within the ALU. The ALU itself supports equality, inequality, greater

than and less than comparisons, an additional combination is necessary to

encode a hash table lookup or invocation of external multi-field classification

engines.

– The second part contains the pointers to the two or four child nodes for all

possible combinations of the single or two calculated Boolean variables. If the

node is a leaf node, the child pointer (which would be NULL in this case) can be

used as ActionID consuming the same space as the child pointer. For the

prototypic implementation I use 10 bits as pointers or ActionIDs, which allows

supporting rule bases with up to 1k nodes. An additional bit is used to

differentiate between pointer and ActionID, thus identifying (partial) leaf nodes.

Summing up all the fields mentioned before, we receive a binary node structure of

93 bits and a quaternary node structure of 186 bits. In the final implementation it is

beneficial to provision a Graph Node Memory that can hold a quaternary node in a

single physical word. At the same time, each word can then also be used to store

two binary decision nodes, with an additional bit signaling to the Classification

Controller whether the current memory word contains a single quaternary or a pair

of binary nodes. The logical addresses used in the child pointers would enumerate

binary nodes as elementary elements and the least significant bit is not forwarded to

the address lines of the Graph Node Memory. Quaternary nodes have to be

assigned to full words, i.e. only even logical addresses.

The main classification routine can now be seen as a combinatorial logic loop,

where using the context address field from the node structure one of the fourteen

context words is selected. Operation, mask and value are fed into the respective

ALU instances and the Boolean outcome of the comparison may be computed. The

result now has to be analyzed by the Classification Controller FSM that computes

Chapter 4 - Concept and Implementation of Path Dispatcher

 137

the address of the subsequent tree node or terminates the classification and initiates

the Translation Memory lookup in the next cycle. In case of a hash table lookup

instead of a simple comparison operation, the decision graph classification has to

be interrupted and the Hash Table Lookup module will be started over the defined

interface.

It is the goal of the design space exploration to find an architecture of the Path

Dispatcher that achieves maximum HDGA throughput while minimizing the resource

consumption in the FPGA environment for the FlexPath NP demonstrator. The basic

assumption is that such an efficient architecture would also be a reasonable choice

for ASIC implementation, although a standard cell design offers more flexibility

especially regarding the availability of custom-sized SRAM blocks.

In order to compare different architectural alternatives, an estimation of the area

consumption (for both memory elements and logic) has to be performed. Memory

and register sizes can be easily derived, when the dimensions are known by

synthesizing a suitable core using the Xilinx CoreGenerator tool. In addition, the

ALU, which performs the calculation of the current Boolean variable based on the

currently selected Raw Context field and the parameters obtained from the Graph

Node Memory, can be easily modeled in VHDL and synthesized using the standard

ISE tool chain. The situation is a little bit more complex for the Classification

Controller that essentially consists of a large FSM that controls the traversal of the

HDGA data structure. Therefore, I have only performed an estimate of the area

required for the different multiplexers that split the HDGA data structure into its

components and drives the data chunks to the correct functional unit (e.g. the Mask,

Value and Operation fields to the ALUs, etc.). The resulting area was determined as

334 slices per ALU, i.e. for a Path Dispatcher with two ALUs (which support

evaluating two Boolean variables for a quaternary node in a single cycle) the area

estimate is 668 slices. Area requirements for static parts like the LIS-IPIF bus

attachment, which is needed for (re-)configuring the Path Dispatcher, the Hash

Table Lookup engine and handshaking logic with up- and downstream pipeline

elements have been neglected.

Based on the above described area estimates, architectural alternatives will be

evaluated in order to obtain the smallest possible solution under the given

constraints. The results for all further investigated architectures are summarized in

Table 16 on page 143.

Chapter 4 - Concept and Implementation of Path Dispatcher

138

4.4.2.2. Path Dispatcher Architecture A

Architecture variant A is based on a straightforward implementation of HDGA based

on the tree node structure presented in Figure 45 and the Path Dispatcher interfaces

shown in Figure 44.

Context Assembler

Context Memory

512x32 (32 Ctx @ 16 words)

Ctx Prefetch

Reg File

Mask

MUX

Compare

Reg File

Mask

MUX

Compare

ALU1ALU0

G
ra

p
h

 N
o

d
e

 M
e

m
o

ry

5
1

2
x
1

8
7

 (
1
k

 b
in

a
ry

 n
o

d
e

s
)

Hash Table Lookup

Translation Memory

64x45

SmartMem

Path Dispatcher

Decision Graph Traversal

Table Lookup or NSE

Classification

Controller

Context Fields

Tree Node Data

BV1BV0

Next Node Addr

Next Node Addr

ActionID

Classification Result

Lookup hit

Figure 46: Path Dispatcher - Architecture A

Architecture A1 uses a single BlockRAM instance as Context Memory, which allows

storing 32 packet contexts with 16 words per context. While the context is written

into the memory from the Context Assembler unit, it has to be fetched into the

Register File by a Context Prefetch unit, which has not been included in the area

estimation. If the entire packet context of 14 words needs to be copied, each

register file will need 448 bits or 224 slices. The Graph Node Memory can be

constructed by chaining several BlockRAM instances in parallel in order to obtain

the required data width of 187 bits (see Figure 45 and include one bit to distinguish

binary and quaternary nodes). This can be achieved with 6 parallel BlockRAMs

offering 192 bits using the 512x32 primitive. The Translation memory will be

implemented in Distributed Memory technology, i.e. using the LUT resources within

Chapter 4 - Concept and Implementation of Path Dispatcher

 139

the FPGA as memories, because of its dimensions. The word width of 45 bits would

require using two BlockRAM resources in parallel, but the associated depth of 512

entries, i.e. 512 processing paths is beyond the need for the demonstrator

implementation. Distributed memory can be parametrized in single bit width

increments at multiples of 16 words deep. I have chosen a depth of 64 entries, i.e.

supporting a maximum of 64 processing paths as a suitable implementation for the

demonstrator. The resulting total area for this solution without the Context Prefetch

and Hash Table Lookup units would therefore be 1,388 slices and 7 BlockRAMs,

equivalent to 5.5% of the slices and 3.0% of the BlockRAM resources of the used

Xilinx Virtex-4 FX 60 FPGA.

Architecture A2 would slightly improve the logic resource consumption by

compressing the fields in the Raw Context provided by the Context Assembler, as

not every extracted field or flag consumes the full 32 bits of each word (cf. structure

of the Raw Context in Figure 88 in the Appendix section). When also ignoring the

two fields that contain the result from the next-hop lookup engine; only 210 bits out

of the remaining 12 context words are relevant for the supported networking

applications. The total area consumption can be reduced to 1,150 slices or 4.5% of

the FPGA. While this compression may appear lucrative from the area consumption

standpoint, it has to be pointed out that in turn a lot of flexibility is lost with respect

to changing the order in which certain header fields and flags are appearing in the

context. The larger implementation of architecture A1 would make it possible to

replace any context field from the currently used set with another protocol field and

the uniform access in 32 bit words would allow to include additional protocols by

simply changing the field address in the Graph Node Memory. In other words, a

plain control plane update of one configuration memory within the Path Dispatcher

unit is sufficient to support in-the-field changes in the supported networking

protocols.

Table 13: Area Estimates for Path Dispatcher Architecture A

Architecture Unit FPGA Slices FPGA BlockRAMs

A1 Context Memory

Register Files

ALUs + CC Multiplexers

Graph Node Memory

Translation Memory

TOTAL

0

448

668

0

272

1,388

1

0

0

6

0

7

A2 Context Memory

Register Files

ALUs + CC Multiplexers

Graph Node Memory

Translation Memory

TOTAL

0

210

668

0

272

1,150

1

0

0

6

0

7

Chapter 4 - Concept and Implementation of Path Dispatcher

140

4.4.2.3. Path Dispatcher Architecture B

Architecture B1 (see Figure 47) tries to eliminate the two parallel register files by

instantiating a wide Context Memory, where the entire packet context can be stored

in a single word using distributed memory technology. The multiplexers in the ALU

can then access the entire context and the Context Prefetch unit can be eliminated.

In turn, the packet context arriving from the Context Assembler has to be converted

to the wider data path width by means of an additional serial to parallel converter

(SPC), which can be implemented as a single shift register of 512 bits length. Similar

as in other units (see chapter 6.2), the Context Memory holds up to 16 packet

contexts. As the memory is quite shallow, distributed RAM appears to be a

reasonable choice, however the estimated figures show a high area cost of 1,708

slices (6.8%) and 6 BlockRAMs (2.6%).

Context Assembler

Context Memory

16x512 (16 Ctx @ 16 words parallel)

SPC 32/512

Mask

MUX

Compare

Mask

MUX

Compare

ALU1ALU0

G
ra

p
h

 N
o

d
e

 M
e

m
o

ry

5
1

2
x
1

8
7

 (
1
k

 b
in

a
ry

 n
o

d
e

s
)

Hash Table Lookup

Translation Memory

64x45

SmartMem

Path Dispatcher

Decision Graph Traversal

Table Lookup or NSE

Classification

Controller

Tree Node Data

BV1BV0

Next Node Addr

Next Node Addr

ActionID

Lookup hit

Classification Result

Figure 47: Path Dispatcher - Architecture B

As an alternative, the Context Memory could be implemented using BlockRAM

memories that can also be configured with variable read and write data widths.

Thus, the need for the SPC could be eliminated by instantiating an asymmetrical

BlockRAM core with 32 bit write interface and 512 bit read interface (Alternative B2).

Chapter 4 - Concept and Implementation of Path Dispatcher

 141

The total system cost estimate evaluates to 940 slices (3.7%) but consumes 22

BlockRAMs (9.5%), which are for the most part only sparsely utilized.

Table 14: Area Estimates for Path Dispatcher Architecture B

Architecture Unit FPGA Slices FPGA BlockRAMs

B1 SPC

Context Memory

ALUs + CC Multiplexers

Graph Node Memory

Translation Memory

TOTAL

256

512

668

0

272

1,708

0

0

0

6

0

6

B2 Context Memory

ALUs + CC Multiplexers

Graph Node Memory

Translation Memory

TOTAL

0

668

0

272

940

16

0

6

0

22

4.4.2.4. Path Dispatcher Architecture C

As we have seen, there exists a fundamental tradeoff in the Path Dispatcher

architecture exploration between small area consumption (both by means of logic

slices and embedded SRAM blocks), generality and extensibility of the design

towards future protocols with different context formats and ease of implementation,

where complex control and prefetching logic might be eliminated by a simple shift

register or a wider memory block. Architecture B2 is the most resource efficient

implementation by means of slices and is extensible to rearranged packet contexts

in a straightforward fashion, but more than twice the amount of embedded SRAM

blocks are needed - measured in percent of the resources offered by the targeted

FPGA device - than for the remaining logic. In order to work off a decision graph

node in a single clock cycle, it is necessary to be able to access the entire range of

context words in a parallel fashion. As we have seen before, this can be achieved by

using either a set of registers or a wide memory.

Still, as we need at most two different context fields in every classification cycle, it

might be more efficient, if we could read the required words directly out of a

(narrow) memory block. This can be achieved with high performance, if the format of

the decision graph nodes is rearranged as shown in Figure 48.

Essentially, the address of the context word involved in computing the Boolean

variable is moved from the node part into the pointer part of the graph node data

structure. In addition to specifying the pointers, i.e. address of the subsequent node,

the address of the upcoming context word is specified for both possible outcomes

(0 or 1) for the binary node. With this information, the address may be routed to the

Chapter 4 - Concept and Implementation of Path Dispatcher

142

Context Memory at the same time as the Graph Node Memory address, and both

the mask/value information as well as the correct context field is available in the

subsequent clock cycle. As it is necessary to include two addresses for binary

nodes and four addresses for the quaternary nodes, the size of the graph node entry

rises to 105 or 210 bits respectively. The resulting 211 bit wide Graph Node Memory

can however still be implemented with a chain of six BlockRAM memories, when

selecting the 512x36 primitive and using the parity check bits as additional data bits.

Binary Node (105 bit):

Mask (32 bit)

Value (32 bit)

Operation (3 bit)

Ptr/Action0

CTX_A0_0

CTX_A0_1

Ptr/Action1

CTX_A1_0

CTX_A1_1

Quaternary Node (210 bit):

Mask_0 (32 bit)

Value_0 (32 bit)

Operation_0 (3 bit)

Ptr/Action00

CTX_A00_0

CTX_A00_1

Ptr/Action01

CTX_A01_0

CTX_A01_1

Mask_1 (32 bit)

Value_1 (32 bit)

Operation_1 (3 bit)

Ptr/Action10

CTX_A10_0

CTX_A10_1

Ptr/Action11

CTX_A11_0

CTX_A11_1

Figure 48: Optimized HDGA Node Contents

Context Assembler

Mask

Compare

Mask

Compare

ALU1ALU0

G
ra

p
h

 N
o

d
e

 M
e

m
o

ry

5
1

2
x
2

1
1

 (
1

k
 b

in
a

ry
 n

o
d

e
s
)

Hash Table Lookup

Translation Memory

64x45

SmartMem

Path Dispatcher

Decision Graph Traversal

Table Lookup or NSE

Classification

Controller

Tree Node Data

BV1BV0

Next Node Addr

Next Node Addr

ActionID

Context Memory

512x32 (32 Ctx @ 16 w.)

Raw ContextRoot Node

Ctx Addr Reg

Context Memory

512x32 (32 Ctx @ 16 w.)

Classification Result

Lookup hit

Figure 49: Path Dispatcher - Architecture C

Chapter 4 - Concept and Implementation of Path Dispatcher

 143

As shown in Figure 49, the Context Memory can now be implemented with two

parallel instances of a single BlockRAM memory that allows storing 32 packet

contexts with 16 words each or 16 contexts (as used in other processing pipeline

elements) and up to 32 words. There is no need for additional prefetching logic and

the next context word addresses are provided by the Classification Controller out of

the Graph Node data structure. The multiplexers previously required in the ALUs can

now be saved. An additional set of registers is necessary to define the context fields

required for evaluating the root node; this initial access is performed in parallel to

fetching the root node information from the Graph Node Memory. The total area

estimate is now reduced to only 872 slices (3.4%) and 8 BlockRAMs (3.4%), so

Architecture C is also a very balanced solution. In addition to being the smallest

possible solution, a lot of freedom is retained that allows easily changing contents

and formats of the packet context without needing to redesign the Path Dispatcher.

Table 15: Area Estimates for Path Dispatcher Architecture C

Architecture Unit FPGA Slices FPGA BlockRAMs

C Context Memory

ALUs + CC Multiplexers

Graph Node Memory

Translation Memory

TOTAL

0

600

0

272

872

2

0

6

0

8

Table 16 summarizes the estimates of the resource utilization for the different

presented architectural alternatives for the HDGA graph evaluation logic.

Table 16: Estimated Resource Requirements of Various Architecture Alternatives

Architecture FPGA Slices FPGA BlockRAMs Share of slices Share of BRAMs

A1 1,388 7 5.5% 3.0%

A2 1,150 7 4.5% 3.0%

B1 1,708 6 6.8% 2.6%

B2 940 22 3.7% 9.5%

C 872 8 3.4% 3.4%

Architecture C is finally chosen to be implemented in the FPGA prototype as it

achieves the desired functionality with the least amount of resources and provides a

good balance between logic elements and memory primitives.

Chapter 4 - Concept and Implementation of Path Dispatcher

144

4.4.2.5. Hash Table Lookup

As described in chapter 4.2, there are two cases for which hash table lookups are

needed in HDGA. The first application is distribution of stateful processing loads

among several parallel processor entities, which is discussed in further detail in

chapter 5.2. Here, packets are assigned to specific processors by performing a

lookup using a hash value of the packet's Internet five-tuple. A complete list with all

possible hash values must be maintained along with the corresponding processing

path assignment. The second application is matching a certain header field against

a larger set of distinct values, which is too large to scale efficiently in the decision

tree structure. Here, a hash table lookup with a possible collision resolution scheme

is required and performs significantly better than working off an exponentially sized

decision graph over several clock cycles.

Based on the previous observations, a simple generic table lookup engine can be

implemented in a straightforward fashion that allows performing direct and hash

table lookups with an optional collision resolution scheme. As the table lookups

involve accessing at least the additional table memory, and an asynchronous

memory access would significantly deteriorate the length of the combinatorial path

delay in the HDGA decision graph traversal block (see Figure 49), the table lookup

will be included in a separate entity with a defined synchronous handshaking

protocol interface. In addition, it is then also possible to replace the table lookup

function as implemented in the Path Dispatcher prototype with any other external

classification engine like e.g. an NSE.

Masked Context Field (32b)

Hashing enable

Truncation width

Base Address

Chaining Address

Hash Key (1-16b)

Register File

P
o

in
te

r/
A

c
ti
o

n
ID

H
it
-F

la
g

H
a

s
h

 T
a

b
le

 S
ta

rt

Register

Hash Fct

(CRC-16)

Truncation

Address

Calc

Hash Table

Memory

1536x64

Table Lookup

Controller

Table

Configuration

16x24

Config. Address

Config. Data

Figure 50: Block Diagram of Table Lookup Unit

Chapter 4 - Concept and Implementation of Path Dispatcher

 145

When the Classification Controller of the Decision Graph Traversal unit detects the

table lookup Opcode in the current graph node, the (masked) 32 bit wide context

field is forwarded from the ALU to the Table Lookup Unit, and the lookup is initiated

by asserting the HashTable Start signal. The table lookup module supports several

tables in parallel, so important information like whether the requested lookup is

direct or hashing based, the key width (which is directly related to the logical

address width of the lookup table) and the base address of the lookup table in the

physical table memory is obtained from a configuration memory. In the subsequent

clock cycle, the masked field may be hashed, using a 16 bit CRC function, is

truncated to the specified key length and the initial lookup address is calculated by

adding the key to the table base address. If a direct lookup or a hash table lookup

without collision resolution is requested, the lookup result can be communicated

back to the Classification Controller in the subsequent cycle. If a hash table lookup

with collision resolution was necessary, the original context field is compared to the

value stored in the hash table. If they correspond, the result may also be

communicated to the Classification Controller. If they don't match, a simple chaining

mechanism is provided in the table lookup unit, i.e. the Table Lookup Controller

obtains the chaining pointer from the hash table entry and performs another lookup

in the following cycle. This may be continued until either the correct key entry was

found or the end of the chain of entries is reached.

4.4.3. FPGA Implementation Results

The Path Dispatcher has been implemented in the way derived above on our Virtex-

4 FX60-based FPGA development platform, which will be discussed in detail in

chapter 6.1. In the following, I would like to briefly highlight the final synthesis results

for the Path Dispatcher as a standalone element; cumulative figures for the entire

prototype platform are deferred to chapter 6. Table 17 lists the synthesis results of

the Path Dispatcher implementation according to Architecture C and including the

Hash Table Lookup module as described in 4.4.2.5. Figures for the LIS-IPIF [99]

needed in the final system as PLB bus master attachment are excluded. However,

the logic in the synthesized core includes the bus attachment FSM implementing the

LIS-IPIC control signals between the Path Dispatcher core and the LIS-IPIF slave.

Table 17: Stand-alone FPGA Synthesis Results for the Path Dispatcher

Resource Type Resource Quantity

FPGA Slices 1,368 of 25,280 (5.41%)

 Slice Flip-Flops 368 of 50,560 (0.73%)

 Slice LUTs 2,450 of 50,560 (4.85%)

FPGA BlockRAM memories 16 of 232 (6.90%)

Critical Path 8.971 ns (i.e. 111.473 MHz)

Chapter 4 - Concept and Implementation of Path Dispatcher

146

Concerning real-time capabilities of the current implementation, the following timing

behavior has to be considered:

– If the rule base can be mapped exclusively on the decision graph structure of

HDGA, the classification within the ingress processing path pipeline is real-time

capable, if the maximum depth of the graph is 15. As already discussed in section

4.4.1, the shortest inter-arrival time between two consecutive packets is 16

cycles, and one cycle is necessary for accessing the first Raw Context word and

HDGA root node information, before the actual graph traversal starts.

– The currently implemented Hash Table Lookup engine consumes three cycles in

non collision-resoluted operation, which reduces the maximum graph depth by

two additional cycles for each hash table access. The implemented chaining

mechanism increases the consumed cycles by one for every additional collision.

As I have shown in section 4.3, a HDGA tree depth of 10 to 15 nodes is already

enough for a significant range of relevant scenarios. However, depending on the

actually configured rule base, the decision graph may become deeper. In order to

tackle the problem of deeper graphs or to enable rule bases with several table

lookup operations, it is possible to introduce pipelining into the architecture of the

Path Dispatcher.

A pipelined version of the Path Dispatcher would need to replicate Context

Memories, ALUs, Classification Controllers and Graph Node Memories. The first

stage would remain unchanged from the current implementation and traverses the

first 15 cycles of the HDGA decision graph. In its last cycle, the root node of the

next-stage HDGA graph would have to be communicated to the subsequent

pipeline stage along with the next context memory pointers. Starting with this

information, the subsequent pipeline stage may work off the remainder of the graph.

By provisioning two pipeline stages, the maximum depth constraint can be raised to

30, which is sufficiently large to work off all problem sizes investigated in the context

of this thesis as shown in Figure 39.

Chapter 4 - Concept and Implementation of Path Dispatcher

 147

4.5. Conclusions

In the present chapter, I have introduced HDGA as a new, modular packet

classification algorithm tailored for the specific environment faced in the path

dispatching problem within a FlexPath NP. However, the classification scheme may

also be easily applied to more general on-chip path selection or task assignment

functions relevant in modern multi-processor SoCs designs. HDGA is a hybrid

approach that combines a decision graph classifier with table lookups. Various

optimization goals for constructing the decision graph have been proposed and

evaluated. Heterogeneous parts of the rule base are dealt with in the graph

structure, which is constructed optimizing for compact implementation and short

average search times. Homogeneous and potentially quickly changing parts of the

rule base are mapped to table lookups (which may be either direct table lookups or

hash table lookups depending on the actual situation) or other specialized

classifiers, e.g. off-chip TCAM-based NSEs.

Before the decision graph is constructed, the classification rule base is minimized

using techniques from logic synthesis and isomorphic sub-trees are merged into a

single instance in order to save memory without hurting lookup performance. In

order to further accelerate the classification process, binary decision nodes from the

graph are merged into quaternary decision nodes where possible.

Figure 51: Throughput Performance of HDGA vs. Several Prior Art Schemes

Throughput and storage requirements of the proposed HDGA classification scheme

(obtained from simulations described in 4.3) are compared to published

Chapter 4 - Concept and Implementation of Path Dispatcher

148

performance figures quoted for classification schemes from the prior art in Figure 51

and Figure 52.

Figure 52: Storage Requirements of HDGA vs. Several Prior Art Schemes

The published performance figures by Woo [68] refer to a software implementation,

while Taylor [65] and Prakash [66] describe an ASIC concept; thus these figures are

hard to compare directly to our FPGA targeted implementation. Cohen [67] only

states performance figures by means of tree nodes and memory accesses, so I had

to estimate the performance by means of bytes and packets per second for

inclusion into Figure 51 and Figure 52. In accordance with the derivation of tree

node sizes by Woo in [68], I favorably assumed one node to consume only 10 bits,

and considered a range of 10 ns to 30 ns for a memory access.

Chapter 5 - Multi-Processor Load Balancing in FlexPath NP

 149

5. Multi-Processor Load Balancing in FlexPath NP

5.1. Introduction

The FlexPath NP I have derived in chapter 3.2 features a network processor

complex with parallel CPUs or processing elements (PE). Parallelization of the

incoming packets onto several processing entities is necessary in order to meet the

processing requirements imposed by the networking applications on the network

processing infrastructure. A fundamental problem faced by every parallel compute

architecture is the problem of load balancing, which will be investigated in the

context of FlexPath NP in the subsequent sections.

The problem of load balancing is not new, and several schemes that deal with the

load balancing problem in the context of network processing have been discussed

in chapter 2.4. However, a FlexPath NP features a Pre-Processor and Path

Dispatcher in an ingress processing pipeline in order to provide different processing

paths for various networking applications. These capabilities, which allow different

treatment for packets of different traffic classes, should in the following be used for

load balancing. After all, solving the load balancing problem is effectively making a

decision on the further processing path of the arriving packet. Therefore, the Path

Dispatcher of a FlexPath NP is the straightforward instance, onto which the load

balancing function should be mapped.

The Path Control, which is covered in detail in Michael Meitinger's dissertation [107],

solves the problem of packet reordering in FlexPath, which has also been given an

important focus in the prior art schemes for NP load balancing. Therefore, we have

investigated how the specific functional enhancements in the NP system can be

exploited to further optimize the NP system performance with respect to satisfying

QoS requirements and maximizing the individual processing element utilization.

Our approach to the load balancing problem is driven by the following question:

What would be the optimum load balancing strategies with respect to overall system

utilization, minimum packet loss rates and processing latencies when considering a

heterogeneous application mix with different QoS requirements?

As the different application classes can be identified within the FlexPath ingress

processing pipeline, it is possible to apply different load balancing strategies for

different application types. This can be seen as a straightforward utilization of the

functionality offered by the proposed network processor architecture, but such a

strategy has not been investigated by other researchers before. In accordance with

the findings in chapter 2.2.7, we have focused our efforts on stateful and stateless

network processing applications and use QoS-aware IP forwarding (see chapters

2.2.1 and 2.2.2) and IPsec encryption (see chapter 2.2.3) as representative examples

Chapter 5 - Multi-Processor Load Balancing in FlexPath NP

150

for the more general application classes. After identifying load balancing techniques

that are well suited for each individual application class, we propose a combination

of the two most promising techniques in systems that process a mix of stateful and

stateless traffic classes. The most important concepts and results described in

detail in the following parts have already been published in [72].

Section 5.2 presents the individual load balancing techniques for stateless and

stateful network processing applications. In addition, a combination of two specific

techniques is proposed for system scenarios that process different application

classes at the same time. Section 5.3 evaluates the performance of the proposed

load balancing techniques and compares them to the performance of prior art

solutions by functional simulation of a parallel processor cluster NP architecture.

Finally, the chapter is concluded in section 5.4.

Chapter 5 - Multi-Processor Load Balancing in FlexPath NP

 151

5.2. Load Balancing Strategies for Different Application

Classes

5.2.1. Stateless Network Processing Applications

In the following discussions, we distinguish two different traffic types within the

class of stateless networking applications: best effort traffic (referred to as BE in the

following), which is the bulk of Internet traffic being forwarded without any QoS

provisions or guarantees, and DiffServ high priority traffic (referred to as QoS in the

following) where a DSCP other than zero defines an application-dependent per-hop

forwarding behavior that has to be applied to the respective packet stream. In our

example, we will simply provide a higher processing and output port queuing priority

to such packets.

We propose to use a slightly modified form of packet spraying (definition see

chapter 2.4.2) for all stateless traffic classes. In order to implement the requested

QoS behavior, it is possible to provide separate queues for each DSCP value and

provision separate queue servicing schemes in order to achieve the requested per-

hop forwarding behavior in the NP. The idea behind implementing a packet spraying

approach is that the packets will experience optimum processing by the PE cluster

as we can exploit a pooling gain from distributing the packets over a multitude of

PEs. In contrast to the spraying mechanism as described by Dittmann in [73], we do

not maintain a single queue in front of each processor, into which the packets are

sprayed. The spraying is performed in the Packet Distributor (details see Michael

Meitinger's dissertation [107], chapter 5) out of a single queue per traffic class,

which is shared among a configurable set of PEs that are responsible for processing

this traffic. As long as a packet sits in the queue, an interrupt will be forwarded to all

PEs associated with the respective traffic type. The interrupt priority for the QoS

queue will be higher than that for the BE traffic. When a PE is busy with processing

a packet, it will mask all its interrupts, so that only idling processors will react to the

interrupts.

As a consequence of the statistical distribution of packets a well-balanced

distribution of the load among all involved PEs can be expected, and each arriving

packet will experience the shortest possible waiting time until it gets serviced. The

modified spraying technique avoids head-of-line blocking effects associated with

queues that are dedicated for individual PEs and also reduces packet reordering

probabilities in comparison to Dittmann's spraying, as packets may only experience

varying processing latencies, but not different queuing delays. Of course, it is not

guaranteed that packets from the same traffic flow are processed by the same

processor, which is acceptable as long as no shared state information is required for

packet processing. The resulting higher packet reordering rates in comparison to

Chapter 5 - Multi-Processor Load Balancing in FlexPath NP

152

the hashing-based dedicated flow assignments are eliminated in a FlexPath NP by

the Path Control unit before the packets reach the output buffers of the NP.

Chapter 5 - Multi-Processor Load Balancing in FlexPath NP

 153

5.2.2. Stateful Network Processing Applications

While packet spraying is a good solution for the stateless network processing

applications, it is ill-suited for stateful processing due to the consistency and

performance implications arising when state information is distributed among

several parallel processing entities. Stateful flows are more efficiently processed on

a single dedicated PE that can hold a local copy of the required processing state. In

case that the aggregate of flows that are assigned to a single PE exceeds the overall

processing capacity, rebalancings have to be performed with a possibly costly state

information migration among the involved PEs. The class of adaptive hashing-based

load balancing schemes (AHH, see chapter 2.4.3 and [74] or HABS, see chapter

2.4.5 and [77]) presented in the prior art section appear to be suitable candidates for

this type of traffic.

I have analyzed the behavior of these two schemes by means of our functional NP

simulation framework (see chapter 5.3.1 for details) and came up with the following

conclusions:

– Implementation and evaluation of the highest random weight (HRW) scheme in

AHH is quite computationally intensive, especially as the hash function has to be

computed N times in a system with N PEs. In addition, the maximum of the N

weighted hash values has to be determined (see formula (2-11) in section 2.4.3).

These calculations cause a significant processing burden for larger processor

clusters. In addition, as weights are adapted in order to reduce the load from

excessively loaded PEs, the algorithm guarantees a minimum disruption property,

i.e. only few flows are shifted, but it is not guaranteed that the shifted flows are

migrated towards the least-loaded PE in the system. In contrast, the flows are

randomly spread among the remaining processors, with a weighting according to

the relative load of all PEs. I have also observed that when the algorithm is

exposed to a system state near the total system capacity that successive

adaptations may lead to oscillating flow assignments between the same pair of

PEs. As the load in the system is reduced, the AHH algorithm stops adaptation,

which is beneficial from a standpoint of keeping flows where they are, but the

uneven load observed on different PEs in the processor cluster leads to varying

queuing latencies for different flows belonging to the same application class. In

addition, for short-lived bursts, which are a commonly observed phenomenon in

Internet traffic, the highest-loaded CPUs are shortly moved into overload with

possible packet loss in the respective queue. This happens although other PEs in

the cluster still have sufficient processing resources available.

– For HABS, the implementation effort is even higher. In addition to the

computations associated with the HRW algorithm in AHH, a flow table has to be

maintained that keeps track of the set of currently active flows in the NP. With

Chapter 5 - Multi-Processor Load Balancing in FlexPath NP

154

every packet arrival a counter in the table has to be incremented and it is reduced

with every packet departure. If the flow table is fully populated, no further burst

shifting may be performed. While the authors state in [77] that up to 300,000 flows

are active in one of their investigated traffic traces, the flow table is dimensioned

to hold only 200 entries. Although the authors make no comment concerning

possible implementation, such a table might be implemented as a hash table with

collision resolution just as described in the context of the Path Dispatcher in

chapter 4.4.2.5. Another problem with the scheme as it is described in [77] can be

identified with respect to packet loss in the system. Whenever an NP system is

driven near the performance limit, some packets may be lost due to temporal

overloads on single PEs, or flows from lower priority traffic classes might be

willfully discarded in order to guarantee the QoS for higher-priority packets. Here,

additional efforts are necessary, e.g. timeouts or a flow aging mechanism, in order

to avoid blocking the flow table by packet arrivals that never depart from the

system again.

In order to minimize the effort spent for load balancing, while maintaining a close to

optimal PE resource utilization, I propose a new, simple, adaptive, hashing based

load balancing scheme referred to as HLU (hash lookup). The following sections

describe the load assignment process of HLU that has to be performed within the

control plane CPU of the NP. The resulting flow to PE assignment can be easily

configured into the Path Dispatcher rule base by performing a hash table lookup

without collision resolution with the IP five-tuple hash computed by the Pre-

Processor.

At system startup, an initial assignment is performed for all possible flows

(distinguished by a hash value that is computed from the Internet five-tuple, called

FlowID in the following) to the individual PEs in the processor cluster or at least a

subset of these. A FIFO list is maintained in the control plane software for each

processor that stores all FlowIDs that are currently assigned to the respective PE

(see Figure 53). From these FIFOs, the hash table entries for the Path Dispatcher

can be easily constructed. Initially, the FIFOs will be filled with an equal amount of

flows. It is known from previous publications (especially [74]) that this assignment is

not optimal due to a bias in the hash value distribution for realistic Internet traffic.

During system runtime, the load of the individual PEs is measured and a load

adaptation that shifts FlowID assignments away from the heaviest-loaded PE to the

least-loaded PE is performed when an unbalanced load situation is observed. In

contrast to the schemes of the prior art presented in chapter 2.4, we do not rely on

queue length as indicators for processor load; instead the load is measured directly

on the respective processors. This can be achieved for CPUs by inserting two

additional instructions in the processing code that inform a set of hardware counters

of beginning and end of the processing routine for each arriving packet. Two

Chapter 5 - Multi-Processor Load Balancing in FlexPath NP

 155

different counters can be provisioned for each CPU, such that it is also possible to

record the load contributions of dedicated and sprayed traffic classes separately.

Fl. 1

Fl. 4

Fl. 5

Fl. 6

Fl. 2

Fl. 3

Fl. 7

CPU1 CPU2

=65% =35%

Fl. 4

Fl. 5

Fl. 6

Fl. 2

Fl. 3

Fl. 7

Fl. 1

CPU1 CPU2

=40% =60%

Fl. 4

Fl. 5

Fl. 6

Fl. 2

Fl. 3

Fl. 7

Fl. 1

CPU1 CPU2

=45% =55%

Figure 53: HLU Load Adaptation Scheme

By removing FlowIDs from the front of the overloaded PE's FIFO and appending it to

the end of the least-loaded PE's FIFO, I insure that flows that have been rebalanced

stick with the new assignment as long as possible. This behavior is in contrast to

AHH, where load variations may lead to oscillations of flow assignments due to the

nature of the HRW algorithm. The assignment persistence is beneficial in the context

of stateful networking applications, where rebalancings not only pose the risk of

packet reordering, but also come at the cost of migrating processing context from

one PE to another.

The current load figures),(ti measured on PE i at time t caused by the HLU-

assigned traffic (i.e. disregarding the load caused by spraying of stateless

applications) are gathered for each PE and are low-pass filtered according to the

following iterative formula:

),(95.),(05.),(
__ adaptpasslowpasslow

Ttititi   (5-1)

From these individual PE loads, maximum, minimum and average utilization figures

are computed as follows:

    ),(min ,),(max
_min_max

titi
passlow

i
passlow

i
  (5-2)

i

ti
i

passlow

avg




),(
_



 (5-3)

An adaptation is triggered, when the utilization of the highest-loaded PE max


exceeds an adaptation threshold AT1 and the imbalance between highest and least-

loaded PE exceeds an adaptation threshold AT2. If max
 is excessively exceeding the

average load, flows are moved towards the least-loaded PE. The number of flows

moved depends on the amount of relative overload  
avg

 
max and number of flow

Chapter 5 - Multi-Processor Load Balancing in FlexPath NP

156

bundles currently assigned to the highest-loaded PE (FIFO[max].size()). The term is

multiplied with a low-pass factor of sover to factor in the risk of moving an aggressive

flow. Analogous to this, flows are assigned towards an excessively under-utilized PE

with a slower low-pass factor of sunder. The low-pass factors help to evenly balance

the loads over several adaptation periods, and wildly oscillating load assignments

caused by aggressive flows are avoided.

Code Listing 1 describes the adaptation routine of HLU, which is executed

periodically (period Tadapt) within the control plane software.

if(rho_max > AT1)

{

 if(rho_min < rho_avg-AT2 or rho_max > rho_avg+AT2)

 {

 if(rho_max-rho_avg > rho_avg-rho_min)

 flows=sover*(rho_max-rho_avg)*FIFO[max].size();

 else

 flows=sunder*(rho_avg-rho_min)*FIFO[max].size();

 while(flows>0)

 {

 FIFO[min].push_back(FIFO[max].pop_front());

 flows--;

 }

 }

}

Code Listing 1: HLU Adaptation Routine

The algorithm's parameters have been determined by a set of simulations with

realistic Internet backbone traffic (see details in chapter 5.3.1) and yield good results

for the considered traffic with the values according to Table 18. If the algorithm is

applied on traffic with different statistical properties as observed in the traces used

for our simulations, an adaptation of these parameters may be necessary. This

adaptation may also be accomplished during system runtime by implementing a

learning algorithm in the control plane of the NP. However, I have not performed a

detailed analysis of such learning methods within the scope of the work covered in

this dissertation.

Chapter 5 - Multi-Processor Load Balancing in FlexPath NP

 157

Table 18: HLU Adaptation Parameters

Parameter Value

AT1 40%

AT2 15%

sover
8

1

sunder
16

1

Tadapt 50 ms

Chapter 5 - Multi-Processor Load Balancing in FlexPath NP

158

5.2.3. Combination of Stateless and Stateful Networking

Applications

In real-world NP deployments, it is often the case that the device has to process a

traffic mix that consists of both stateless and stateful networking applications. As

the processing requirements with respect to packet order and assignment of

subsequent packets of a single connection to the same PE are stricter than for

packets belonging to the stateless application class, load balancing in actual NP

deployments usually implement one of the hashing-based techniques as presented

in section 2.4.

As I have shown in section 5.2.1, packet spraying is a suitable alternative for

stateless traffic that achieves almost perfect load balancing and may exploit a

pooling gain effect due to the statistical distribution of arriving packets onto the

available processor resources.

For stateful networking applications, dedicated load assignment schemes that

insure processing of packets of a specific flow on a distinct processor are required.

In section 5.2.2, I have shown that this can be achieved by two techniques from the

prior art (AHH and HABS), but as both techniques are rather complex to implement,

I have proposed HLU as an alternative load balancing technique that requires less

implementation effort.

A distinct feature of the FlexPath NP architecture is its capability to distinguish

different applications in the ingress hardware data path and subsequently assign the

arriving packets onto different processing paths. This feature can now be exploited

for the load balancing problem by separating the arriving traffic into stateless flows,

which may be sprayed among the PEs in the parallel processor cluster and stateful

flows, for which load balancing can be achieved with HLU. The combination of

these two load balancing techniques, which are respectively applied to different

applications in the actual traffic mix is referred to as S&H (spraying and HLU) in the

following.

Depending on the requirements of the individual applications, different queuing

priorities can be chosen for each individual traffic type. As Michael Meitinger shows

in chapter 5 of his dissertation ([107]), the Packet Distributor in our demonstrator

implementation supports sixteen queues with a static priority, but each of the

queues can be configured to be used either for packet spraying or implement a

direct mapping to a single processing element. The Path Dispatcher is used to

classify the incoming traffic and determines the Packet Distributor queue, into which

the current packet is assigned. The combination of Path Dispatcher and Packet

Distributor in a FlexPath NP thus provides a powerful framework for deploying

sophisticated load assignment techniques that allow a fine-grained control of the

packet assignment onto the available processing resources.

Chapter 5 - Multi-Processor Load Balancing in FlexPath NP

 159

5.3. Functional Simulation of Load Balancing Techniques

5.3.1. Simulation Model

In order to evaluate and compare the performance of the various regarded load

balancing techniques, we have developed a functional level SystemC model of the

FlexPath NP system as depicted in Figure 54.

...

QoS

Spray.
BE

Spray.
PE dedicated
0 … 15

MP Interrupt Controller

Burst Shifter

Path Control

...PE

0

PE

15

Data

Plane

Cluster

Path Dispatcher

Control

Plane

CPU

Pre-Processor

Post-Processor

Output Buffer
H L
Port 0

Configuration

Interface

Packet

Interface

Reference only

FlexPath only

Packet

Distributor

Packet Analysispcap Traffic Input

PE

1

PE

2

Figure 54: Functional Simulation Model of FlexPath NP and Reference Architecture for

Load Balancing

Packet classification and hash table lookup (which is needed in both HLU and AHH)

are performed in the Path Dispatcher model of the system simulator.

The reference scenario is not assumed to feature the extensions of a FlexPath NP

like pre-processing and packet classification, thus the model of the Path Dispatcher

is used to perform the load assignment according to the AHH or HABS schemes

irrespective of the application type to which the arriving packet belongs. In order to

implement the HABS scheme, a model of the Burst Shifter is necessary, which is

absent in the FlexPath simulations. The burst shifter remaps flows in overload

Chapter 5 - Multi-Processor Load Balancing in FlexPath NP

160

situations based on queue fill levels and the current flow table entries as described

in chapters 2.4.4 and 2.4.5. In the following simulations, the flow table size has been

set to 16 entries.

For FlexPath NP, I demonstrate S&H as described in section 5.2.3. Stateless QoS

and BE traffic is separated and assigned into two queues in the Packet Distributor,

from which they are sprayed among the data plane processors on two different

priority levels. The stateful IPsec traffic is assigned to dedicated queues that are

each associated with a single PE and load balancing is achieved with HLU.

The Packet Distributor model supports 16 queues for up to 16 dedicated CPUs and

two additional queues for high and low priority packet spraying. The QoS spraying

queue has the highest interrupt priority, followed by the dedicated assignment

queues and BE traffic is sprayed with lowest interrupt priority. The queue size is

initially set to 32 packet descriptors, and packet descriptors are lost, when they are

assigned to a full queue, i.e. there is no backpressure mechanism that could cause

head-of-line blocking effects in the Packet Distributor. By implementing such a

scheme in the Packet Distributor, it is possible to investigate average-case

dimensioning of the NP architecture, where the provided processing performance in

the processor cluster is sufficient to deal with average case traffic from the links, but

not with worst-case scenarios (e.g. all packets require most complex processing

and arrive with maximum possible rate). Here, it is possible that traffic variations

lead to (temporary) overloads in the processor cluster, resulting in a certain amount

of packet loss. By instantiating parallel, non-blocking queues for the different traffic

types in the system, it is possible to guarantee QoS at least for the higher-prioritized

traffic types and can limit the packet losses mainly to the BE traffic class.

The Packet Distributor queues should not be confused with queuing for solving

output port contention. This is achieved in the output buffers in front of the transmit

interfaces, i.e. our FlexPath NP model behaves like an output-buffered switch.

The processing latencies in the data plane cluster are derived from a networking

stack implemented on our Virtex-4 FPGA-based demonstrator (see [106], NB: this

version works only with the old Buffer Manager DMA as presented in section 3.3.2.2

and is not compatible with the SmartMem as presented in chapter 6) and have been

measured to be 10 µs for plain IPv4 forwarding and

s
byte

lengthpacket
st

IPproc
mm 112

64

_
310

sec,


for IPsec encryption. These latencies were measured on a single running CPU,

which cannot be used in a straightforward fashion to model effects in processor

clusters with significantly more cores. In order to cover processing jitter effects that

appear in more parallelized architectures due to shared resource conflicts, 20% of

Chapter 5 - Multi-Processor Load Balancing in FlexPath NP

 161

the packets are processed with a 50% processing time penalty and another 10% of

the packets are processed with twice the latency obtained from the single CPU

measurements.

In contrast to the original AHH implementation, which assumes uniform processing

latencies for all traffic types, we are using the real CPU loads as input to the AHH

algorithm. Kencl calculated the CPU load by multiplying the packet rate with the

processing latency per packet, leading to a theoretical processor load that may

exceed 100% in overload situations. Since in a heterogeneous application mix the

processing latency cannot be predicted in such a simple fashion, we had to use the

actually measured processor loads as described in section 5.2.2, but can thus not

measure loads beyond 100%.

The following simulations have been performed with a set of real backbone traffic

traces obtained from CAIDA ([96], [97], [98]). In order to obtain a comparable data

throughput, traces from different points in time were multiplexed, thus preserving

original traffic characteristics like packet inter-arrival times and flow characteristics,

but increasing the overall bandwidth. One other trace, which came from a highly

utilized link and which would have exceeded the processing capability of the

implemented simulation model had to be slowed by a factor of four, but the high

amount of bursts, which is in contrast to the characteristics observed in the other

traces, makes it attractive for simulation in order to cover a wider range of cases

investigated. Table 19 summarizes the main characteristics of the employed traces.

Table 19: Key Characteristics of Utilized Internet Traces

Trace Name Packets Avg. Data Rate IPsec QoS BE

OC-48_mux [96] 22,086,716 1.955 Gbit/s 0.07% 4.14% 95.79%

OC-192_mux [97] 41,223,895 2.819 Gbit/s 0.40% 4.04% 95.56%

OC-192_quarter [98] 26,473,646 1.320 Gbit/s 0.63% 7.39% 91.98%

The OC-48_mux trace is generated from four original traces taken on an OC-48

backbone link in 2002 [96]. The original link was only about 30% utilized, so we

multiplexed traces taken at 15-minute intervals into a single trace and limited the file

to one minute duration. Intermediate bursts were limited to 3.2 Gbit/s as our

simulation model assumes a 32 bit data path running at 100 MHz as models for the

FlexPath NP hardware pipeline in accordance with the implementation results on

our FPGA-based demonstrator platform (see chapter 6).

The OC-192_mux trace was obtained in the same fashion as the OC-48_mux trace,

but using data from a 2008 snapshot [97].

Chapter 5 - Multi-Processor Load Balancing in FlexPath NP

162

The OC-192 trace in the opposite direction is the highly utilized one with bursts

exceeding 9 Gbit/s for periods of a few seconds and intermediate idle times that

was slowed down by a factor of four in order to get into the less than 3.2 Gbit/s

range also during most of the original bursts in the trace.

When comparing the traces from 2002 to those taken in 2008, it can be seen that

both the IPsec and QoS-marked traffic shares have increased significantly. Still, the

best effort traffic consumes more than 90% of the traffic in current high-speed

Internet links.

Although the FlexPath NP architecture was designed with networking application

mixes in mind, which are typically found at the network edges, rather than in the

core network, it was necessary to resort to those backbone traces, as edge or

access network traces are not made publicly available for both privacy and security

concerns. We still consider the later obtained results and conclusions to be valid, as

backbone traffic is essentially only a multiplex of a multitude of edge traffic streams,

thus important characteristics like protocol distribution and flow-specific

characteristics like data rates, burstiness and packet inter-arrival times are

preserved through the multiplex.

5.3.2. Individual Performance of Load Balancing Techniques

The load balancing techniques presented in the prior art section were all described

in an environment with homogeneous processing, i.e. no QoS classification of

application differentiation was regarded with respect to the load balancing problem.

In order to make the individual proposed load balancing techniques, i.e. packet

spraying and HLU, better comparable with those from the prior art, they will be

evaluated against each other in the following chapter using a simple NP scenario,

where the entire traffic is subject to plain best effort forwarding. S&H as a

combination of two load balancing techniques will be presented later after having

evaluated its individual components. I have not simulated all prior art schemes

(AHH, Burst Shifting and HABS), but use the most advanced scheme from the prior

art (i.e. HABS) as a reference, against which the newly proposed packet spraying,

HLU and later also S&H will be compared. In the following scenarios, the Path

Dispatcher is configured to perform only the various load assignment strategies

without classifying the traffic into the QoS, IPsec and BE classes. The CPUs also

apply the forwarding latency with the previously mentioned jitter behavior. I show

the simulation results obtained with the OC-48_mux trace (see Table 19) in the

following; the general behavior does not change significantly when simulating the

system with the other traces. Some results obtained for the other traces will be

shown later in chapter 5.3.3, when the proposed S&H technique is applied to a

heterogeneous traffic mix.

Chapter 5 - Multi-Processor Load Balancing in FlexPath NP

 163

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of PEs in Processor Complex

A
v
e
ra

g
e
d

 P
E

 L
o

a
d

 (
%

) HABS max

HABS min

HLU max

HLU min

spray max

spray min

Figure 55: Minimum and Maximum CPU Loads Observed with Different Load Balancing

Strategies

Figure 55 shows the ranges between minimum and maximum of the averaged

individual PE utilization for each of the three investigated load balancing schemes

with an increasing amount of processors in the central network processing cluster. It

can be seen that for packet spraying we receive a single line indicating that all

processors are sharing exactly the same load, which can be seen as an optimally

balanced workload. In HLU, the adaptation threshold AT2 limits the difference

between most and least utilized processor to a maximum of 15%, in reality this

imbalance is even lower. Still, there is a residual load imbalance associated with the

flow persistent load assignment. As not all flow bundles cause the same amount of

processing effort, any dedicated split-up of the entire load will eventually lead to

slightly varying workloads on the individual processors. In stark contrast to the two

before-mentioned schemes are the results for the HABS load balancing. Both the

AHH as the Burst Shifting components, which are part of the HABS algorithm, are

designed to eliminate temporal overload in processor utilization. However, none of

the two schemes explicitly optimize the load distribution in underload situations, i.e.

if none of the processors reaches its capacity limit, no further loads are remapped.

This may lead to grossly imbalanced loads especially when the average system load

is below 60%, where certain processors remain around 60% utilized while other

processors are starved at less than 30%.

Chapter 5 - Multi-Processor Load Balancing in FlexPath NP

164

0.0000%

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

100.0000%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of PEs in Processor Cluster

L
o

s
s
 R

a
te

 (
%

) HABS

HLU

spray

AHH

Figure 56: System Packet Loss Rates for Different Load Balancing Strategies

Figure 56 shows the resulting packet loss rates achieved with each of the different

load balancing strategies. In addition to packet spraying, HLU and HABS, I have

also included a simulation with plain AHH, as this scheme is conceptually closest to

the newly proposed HLU assignment (both are based solely on hash bundle load

assignment, only the adaptation strategy is different). It is important to realize that a

system configuration with less than five CPUs is not sufficient to process the

incoming traffic, i.e. the simulated NP system is in overload and loses significant

amounts of the incoming packets. As the overall processor load declines between

five and six processors, the packet loss rate is reduced to less than 10-5. With more

than 7 processors, the provided processing power is greater than necessary to cope

with the offered load also during temporary bursts, thus the packet loss rate can be

interpreted as a measure for the effectiveness of the individual load balancing

mechanisms.

The worst packet loss can be observed for both AHH and HLU; beyond eight

processors, these two schemes almost converge on a similar performance level.

This can be explained by the fact that both AHH and HLU base their decision on a

hash split of the traffic among the available processing resources and imbalances

are leveled out with an adaptation interval in the millisecond range. However,

network traffic also has very short-lived bursts that lead to brief temporary overflows

in the Packet Distributor's queues. Reducing the adaptation interval of the two load

balancing algorithms does not really help, as this would lead to a high amount of

flow bundle rebalancings and the system would not converge to a steady-state, in

which a certain level of flow persistence can be maintained. In the transitional range

for five to seven processors, where the system emerges from the overload situation,

HLU with its more even balancing of the traffic performs better than AHH.

Chapter 5 - Multi-Processor Load Balancing in FlexPath NP

 165

It also appears that HABS performs better than spraying, which might be surprising

at first. However, these results can easily be explained by the fact that the buffer

space in front of the processors is higher for HABS (and AHH, HLU) than in packet

spraying, as the sprayed packets go through a single queue (with 32 entries), the

dedicated assignment schemes all feature a queue with 32 entries per CPU, i.e. in

case of five CPUs, the buffer space is 80 packets for the dedicated assignment and

only 32 for packet spraying. Such queuing effects will be studied in further detail

later in Figure 58.

The HABS load balancing scheme performs about half an order of magnitude better

than both AHH and HLU. As in HABS the AHH algorithm is extended with the Burst

Shifter described in chapter 2.4.4, temporary overloads caused by short-lived bursts

are effectively distributed to less-utilized processors also in between two AHH

adaptation times. However, this increased performance has to be paid with a rather

high additional effort, as a flow classification has to be performed on the ingress

side of the NP and the flow table must be maintained for all flows that are currently

active in the system. In a FlexPath NP architecture this could be achieved by sharing

some resources in the Path Control unit (although this works on flow bundles rather

than microflows); otherwise a similar implementation effort has to be performed.

The best performance of the previously discussed schemes is achieved with packet

spraying, and a true lossless operation is achieved for any scenario beyond seven

CPUs. Packet spraying achieves the best results as there is no aggregation of

packets from a burst in front of a single PE.

0

10

20

30

40

50

60

70

80

90

100

5 6 7 8 9 10 11 12 13 14 15 16

Number of PEs in Processor Cluster

A
v

e
ra

g
e

 L
a

te
n

c
y

 (
µ

s
)

HABS

HLU

spray

Figure 57: Average Packet Latency for Different Load Balancing Strategies

For the remaining investigations, I focus on the range between five and 16

processors, so the dramatic overload situation is avoided. Figure 57 shows the

averaged latency of the packets subject to HABS, HLU and packet spraying

Chapter 5 - Multi-Processor Load Balancing in FlexPath NP

166

algorithms. The stated latency figures are measured from receive interface to

transmit interface and thus include the pre-processing delay, CPU processing delay

and possible packet re-sequencing delays. For packet spraying, the latency is

reduced very effectively, until a minimum floor is reached, which is defined by the

processing time in the central processing cluster without any further queuing delays.

As the individual processor loads are more evenly balanced in HLU compared to

HABS, the latency which is achievable with HLU is also slightly smaller than that of

HABS as shorter average queue lengths may be assumed in front of each

processor.

0.00001%

0.00010%

0.00100%

0.01000%

0.10000%

1.00000%

10.00000%

0 32 64 96 128 160 192 224 256 288 320 352 384

Cumulated Input Buffer Size (packets)

P
a

c
k

e
t

L
o

s
s

 R
a

te
 (

%
)

-

10

20

30

40

50

60

A
v

e
ra

g
e

 P
a

c
k

e
t

L
a

te
n

c
y

 (
µ

s
)

HABS - loss HLU - loss spray - loss

HABS - latency HLU - latency spray - latency

Figure 58: Packet Loss Rate and Average Latency for Different Packet Distributor

Buffer Sizes (6 PEs)

Packet loss rates and latencies are not only dependent on the number of

provisioned processors, but are heavily dependent on dimensioning the buffers in

the system. As it can be seen in Figure 58, the packet loss rate may be reduced

effectively by provisioning larger buffers holding packet descriptors in the Packet

Distributor. This may be explained by the fact that during those previously

discussed packet bursts the buffers are not any longer overflowing, but are able to

hold all incoming packets. When the burst is over, the backlog may be worked off.

In turn, the average observed packet latency is increasing, because the packets

accumulated during bursts are still sitting in the queue and suffer a longer delay in

comparison to when they were lost (where we would not count a latency of infinity!).

In general, we can see that while architecting an NP system, we can trade off

additional processing resources with an increased buffer size. If the bursty nature of

realistic Internet traffic is figured into the dimensioning process, significant amounts

Chapter 5 - Multi-Processor Load Balancing in FlexPath NP

 167

of processing resources can be saved by adding some extra buffer space in order to

accommodate more packets during relatively short bursts and still being able to

forward the offered traffic. However, the increased latency resulting from larger

buffers might have a negative effect on interactive applications like VoIP or Internet

video. While packet spraying operates losslessly and with a constant latency

beyond a buffer size of 48 packet descriptors for the given processor cluster size of

6 PEs, the other schemes require significantly larger buffer space to reduce the

packet losses.

The FlexPath NP provides different processing paths for packets of different

applications. The Path Dispatcher in the ingress path of the architecture determines

the actual path, to which each arriving packet is assigned. In this context, the before

mentioned queue length vs. number of PEs vs. packet loss vs. packet latency

tradeoff might be evaluated differently for various traffic classes. In consequence, it

is conceivable that best effort traffic types are tackled with relatively fewer

processing resources and excessive packet loss is avoided by larger queues in the

Packet Distributor. In turn, more processors may be used for QoS-sensitive

applications in combination with shorter queues in the Packet Distributor in order to

minimize packet latency.

5.3.3. Performance of S&H Load Balancing

Disc/Corr-Flags = 00

IP DSCP > 0

Disc Disc
QoS

spray

00

0
1

1
0

ESP/AH-Flags = 00

11

BE

spray

0

HLU Table Lookup

1

DCPU

*Table
Disc

0 1 Hash Value CPU#

0x000 1

0x001 5

0x002 2

0x003 4

0x004 2

:

:

0x7FF 3

Figure 59: HDGA Decision Graph for FlexPath NP Load Balancing Simulation

In the following chapter, I show the achieved load balancing and forwarding

performance by combining a multi-priority packet spraying for stateless traffic with

Chapter 5 - Multi-Processor Load Balancing in FlexPath NP

168

HLU for stateful IPsec processing. The combined scheme for the previously

described heterogeneous application mix is in the following referred to as S&H. The

Path Dispatcher is configured to assign the QoS and BE packets directly to the two

queues that spray the traffic over all processors. Only packets identified as IPsec

are assigned to dedicated CPUs using the HLU algorithm. The resulting HDGA

decision graph is shown in Figure 59.

As described in chapter 4.2.5, the control plane CPU executing the HLU algorithm

only has to manipulate the contents of a hash table in order to rebalance the

dedicated load between the CPUs in the processor cluster. We assume a constant

application scenario during runtime, so that the decision graph itself is not changing

during runtime. As the load balancing schemes from the prior art do not consider

such a heterogeneous processing approach and have typically no provisions to

differentiate between various applications in the ingress path of the NP, we use

HABS to balance the entire traffic load, irrespective of the actual packet processing

requirements. However, in both simulation scenarios (FlexPath and reference) the

processors determine whether to apply forwarding or IPsec latencies to the

incoming packet. Therefore, the overall processing requirements remain the same

for the reference simulations and the S&H load balancing in a FlexPath NP.

0.0000%

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

100.0000%

5 6 7 8 9 10 11 12 13 14 15 16

Number of PEs in Processor Cluster

P
a
c

k
e

t
L

o
s
s

 R
a
te

 (
%

)

HABS Loss S&H Loss

Figure 60: Packet Loss Rates of S&H (FlexPath) and HABS (Reference)

The results shown in Figure 60 show a consistent behavior with respect to the

individual characteristics observed for the load balancing schemes in isolation that I

have presented in chapter 5.3.2. As the vast majority of the packets in the simulated

Internet traffic trace belongs to the BE class (see Table 19), the same kind of

"waterfall" packet loss rate can be observed for S&H in the FlexPath NP simulation.

However, as IPsec processing takes roughly three orders of magnitude longer than

plain IP forwarding, lossless operation is achieved only beyond nine processors, in

contrast to the seven processors previously needed for plain forwarding as shown in

Figure 56.

Chapter 5 - Multi-Processor Load Balancing in FlexPath NP

 169

Figure 61 shows the packet latencies differentiated by the respective application

types in addition to the used load assignment scheme. By giving priority to the QoS

packets in FlexPath, we are able to forward them with almost minimum latency,

even while the buffers for BE traffic are in overload and packets are lost in the

system. The latency figures for BE traffic and QoS high priority traffic converge

towards the minimum latency which is determined by the plain processing latency

from nine processors onwards. In contrast, the latency of the IP forwarding packets

is about a factor of three to four larger in the reference simulation scenario (HABS),

as the plain forwarding packets occasionally get stuck in the queue behind IPsec

packets (head-of-line blocking effect). In addition, as QoS packets can not be

recognized at the ingress path of the NP, no performance advantage can be

observed for them. Differences might still be achieved in the reference simulations, if

the processors assign the packets to prioritized output queues, so that the QoS

packets may receive beneficial treatment with respect to output port contention

resolution and queuing at the egress side of the NP architecture. This kind of output

queuing and scheduling is a widely accepted standard in NP architectures and is

typically implemented by the Traffic Manager hardware resources found in

commercial NPs (see chapter 2.1.1). However, output port scheduling and port

contention resolution effects have not been captured in our simulation model, as we

have not implemented an explicit routing functionality in the processing software

model.

10

100

1,000

10,000

5 6 7 8 9 10 11 12 13 14 15 16

Number of PEs in Processor Cluster

A
v

e
ra

g
e

 P
a

c
k

e
t

L
a

te
n

c
y

 (
µ

s
)

HABS QoS Latency HABS IPSec Latency HABS BE Latency

S&H QoS Latency S&H IPSec Latency S&H BE Latency

Figure 61: Packet Latencies for S&H (FlexPath) and HABS (Reference)

Chapter 5 - Multi-Processor Load Balancing in FlexPath NP

170

0

10

20

30

40

50

60

1 6 11 16 21 26 31 36 41 46 51 56

Time (s)

P
E

 C
u

m
u

la
te

d
 L

o
a
d

 (
%

)

PE_0_QoS

PE_0_IPSec

 PE_0_BE

Figure 62: Individual PE Load Share over Time (S&H)

Figure 62 investigates the variations in the load of an individual PE over the course

of the simulation for the different processing classes. The proposed combination of

packet spraying and dedicated load assignment with HLU in a FlexPath NP allows

some "load breathing" on the individual processors. While a larger share of IPsec

packets is assigned to the PE (e.g. between 25 and 45 seconds in the simulation

shown above) and consumes a larger share of the available processing

performance, sprayed traffic is superseded (and in consequence processed by other

PEs, which carry less IPsec traffic at the same moment). The supersession is not

explicitly triggered by the control plane CPU, thus it happens instantaneously and

packets assigned to the spraying queues don't get stuck waiting for the IPsec

packet to finish.

Finally, we wanted to investigate the performance of our proposed load assignment

scheme with respect to packet reordering, which has been given great attention in

all prior art schemes for NP load balancing. If the Path Control is properly

dimensioned, the packet reordering problem is solved on the system level. Figure 63

shows that the packet reordering rate resulting from packet spraying in the

proposed form for FlexPath measured in front of the Egress Path Control is roughly

0.35% of all packets, which is quite significant and roughly two orders of magnitude

more than the 2×10-5 achieved with the HABS scheme. However, at the output of

the Path Control unit packet reordering can be completely eliminated except for the

two simulation runs performed with six and seven processors. More details about

packet reordering in FlexPath and how to properly dimension the Path Control unit

can be found in Michael Meitinger's dissertation ([107]).

Chapter 5 - Multi-Processor Load Balancing in FlexPath NP

 171

0.00000%

0.00001%

0.00010%

0.00100%

0.01000%

0.10000%

1.00000%

5 6 7 8 9 10 11 12 13 14 15 16

Number of PEs in Processor Cluster

P
a

c
k

e
t

R
e

o
rd

e
ri

n
g

 R
a

te
 (

%
)

HABS S&H S&H after Resequencing

Figure 63: Packet Reordering Rates

The same set of simulations and investigations presented before with the OC-

48_mux trace have also been repeated with the two other traces (OC-192_mux and

OC-192_quarter). The general behavior of the prior art and S&H load assignment

schemes has been confirmed, so that all resulting plots look quite similar. However,

due to the different shares of IPsec traffic and different average throughput of the

traces, the performance figures are generally shifted towards the right, i.e. lossless

operation and low latencies across all traffic types are only achieved with more

processors in the processor cluster. The key performance figures obtained for all

three traces for a comparison between S&H and HABS in the multi-application mix

are summarized in Table 20 below. The performance figures are quoted for the

system architecture with the minimum number of processor cores necessary for

lossless operation of the sprayed traffic, i.e. QoS and BE. In both S&H and HABS

scenarios, packets with dedicated load assignment (i.e. IPsec for S&H) may be lost

due to temporary traffic bursts that exceed the provisioned buffer capacity.

Table 20: NP Performance Characteristics for S&H (FlexPath NP) and HABS (Reference

Architecture)

Trace # of PEs Scheme Packet Loss QoS Latency IPsec Latency BE Latency

OC-48_mux 10
S&H 0.0000% 15,177 ns 2,131,125 ns 15,378 ns

HABS 0.1311% 51,600 ns 2,044,273 ns 52,624 ns

OC-192_mux 16
S&H 0.0002% 15,926 ns 3,122,052 ns 16,139 ns

HABS 0.2865% 66,928 ns 1,586,312 ns 69,614 ns

OC-192_quarter 15
S&H 0.0010% 15,266 ns 3,896,399 ns 15,058 ns

HABS 0.4792% 159,945 ns 2,124,968 ns 157,635 ns

A common characteristic is that in the FlexPath NP architecture, the latency of the

QoS packets is always slightly smaller than that for the BE packets, due to the

Chapter 5 - Multi-Processor Load Balancing in FlexPath NP

172

higher interrupt priority in the Packet Distributor and the pre-classification of the

incoming traffic in the ingress hardware processing pipeline of the NP. For the same

reasons, it can also be observed that the IPsec latency in FlexPath is also

consistently higher than in the reference simulation with HABS. In the reference

scenario, IPsec and non-IPsec traffic is assigned into the same queue in front of the

processors. Thus the probability for an arriving IPsec packet to be stuck behind

another IPsec packet is significantly less, as there are much more BE packets than

IPsec packets in the traffic. In FlexPath NP, IPsec packets have their private queue,

separated from the BE and QoS traffic classes, so that they always get stuck behind

other IPsec packets. This effect can also be seen, as the latency of the BE and QoS

packets in the reference simulation is also significantly higher than in S&H, where

such packets may only get stuck behind other forwarding packets, but not behind

IPsec packets. QoS and BE packets in the reference simulation are similar across

the different traces, but QoS packets are not guaranteed to have a lower latency

than BE packets.

Chapter 5 - Multi-Processor Load Balancing in FlexPath NP

 173

5.4. Conclusions

In the previous chapter, I have focused the investigations on the generic problem of

load balancing among parallel processing elements with respect to the FlexPath NP

architecture. As the FlexPath NP with its Path Dispatcher unit in the ingress data

path pipeline provides a dedicated unit for traffic classification and differentiation, I

have shown how to capitalize on this infrastructure in order to achieve superior load

balancing behavior and QoS performance. Based on networking application

characteristics, three different cases are regarded:

– Stateless Networking Applications don't rely on a shared connection state and

processing of the arriving packets can be performed by any PE in an independent

fashion. As packet reordering is addressed separately by the Path Control unit in

a FlexPath NP architecture, we have identified packet spraying as a viable load

balancing technique for this traffic class. Packet spraying is very beneficial as it

achieves the most evenly balanced load distribution among the involved

processors and is completely self-organizing, i.e. no additional monitoring and

rebalancing effort is needed in the system.

– Stateful Networking Applications should be load balanced using an adaptive

hashing-based load assignment scheme in order to keep processing state

information local on a specific PE for each flow. Following an analysis of state-of-

the-art techniques, I proposed HLU as a simpler but equally effective load

balancing technique. HLU can be very efficiently mapped to the table lookup

functionality offered by the HDGA algorithm in the Path Dispatcher.

– Traffic Mixes containing both stateful and stateless traffic types are typically

encountered in real-world scenarios. For these circumstances, I have proposed to

combine packet spraying and HLU into a new technique called S&H.

The simulations of the different load balancing techniques with realistic Internet

traffic traces have revealed that packet spraying achieves the biggest performance

improvements with respect to reduced packet latencies and loss rates and also by

equally distributing the arriving load over the different processors. Fortunately, as

most of the traffic in current networks belongs to the stateless traffic class, these

benefits are preserved in S&H load balancing, as only a minor share of the traffic is

assigned by HLU. Imbalances caused by the dedicated assignment onto specific

processors can be filled with sprayed traffic without the need for dedicated control

from the system management plane.

In addition to combining different load balancing techniques for different traffic

types as in S&H, the FlexPath NP architecture allows to differentiate the QoS-levels

of the incoming traffic in the Path Dispatcher rule base. Therefore, it is possible to

prioritize performance-critical traffic streams even before they reach the central

Chapter 5 - Multi-Processor Load Balancing in FlexPath NP

174

network processing complex of the NP in the Packet Distributor. In both the

simulation model and the FPGA prototype implementation (see chapter 6), we have

implemented a strict priority-based scheduling in the Packet Distributor, but it would

be possible to implement more sophisticated strategies, if this was mandated by the

QoS requirements in the respective per-hop-behavior. As the classification in the

Path Dispatcher is happening under hard real-time constraints, an additional latency

advantage can be achieved for high-priority packets in a properly configured

FlexPath NP in comparison to a reference architecture, in which the prioritization is

performed in software.

Chapter 6 - FlexPath NP Demonstrator

 175

6. FlexPath NP Demonstrator

In the following chapter I conclude the technical part of this dissertation with

measurement results obtained on an FPGA-based prototype implementation of a

FlexPath NP in conjunction with the SmartMem buffer manager. In section 6.1, I will

outline the goals of the prototype implementation and introduce the FPGA

development board. Section 6.2 presents the implemented FlexPath NP on the

FPGA platform describing the most important features of the implemented

functional modules. In order to give the reader sufficient insight about the system

view of the FlexPath demonstrator, I have also included brief descriptions of the

functional modules implemented by my colleagues Michael Meitinger and Daniel

Llorente, who present the conceptual and implementation details in their respective

dissertations ([107] and [108]). Section 6.3 describes the lab equipment and

measurement setup that has been used to obtain the demonstrator results. The

results are then presented in three separate sections: a processor-centric reference

scenario, which is used to determine the baseline performance of the implemented

NP without using any of the FlexPath NP-specific functions is described in section

6.4. In section 6.5, I investigate the effects of the hardware-offload capabilities in a

FlexPath NP on the system performance. The load balancing techniques are then

addressed in section 6.6, before the chapter is concluded in section 6.7.

6.1. Demonstrator Goals and Platform

In order to prove the validity of the FlexPath NP architectural approach and in order

to support the results obtained from the various simulations presented before, we

decided to implement a full-featured prototype of a FlexPath NP on an FPGA

development platform. The main objectives of the demonstrator are twofold:

– By implementing the crucial functional elements of the FlexPath NP architecture

(i.e. Pre-Processor, Post-Processor, Path Dispatcher, Path Control) we can prove

the feasibility of the proposed elements. In addition, we can gain real-world

performance figures like area consumption and packet throughput that would not

be accessible purely by simulation.

– As we have also implemented an entire NP system, we are able to perform

performance measurements and to compare those figures to the projected

behavior obtained through our various system-level simulations. In addition to

justifying the previous simulation results, a real implementation will also reveal

behavior which is typically not captured by simulations, due to the higher level of

abstraction and simplifying assumptions of the simulation model. While a

simulation model is well suited for exploring new ideas and giving initial support

for new hypotheses, only a full implementation of the proposed architecture is

able to finally prove the viability of each concept.

Chapter 6 - FlexPath NP Demonstrator

176

Of course, such an FPGA-based demonstrator also has some problems, which

should be briefly discussed here.

At first, implementing a complex multi-processor system-on-chip design such as a

network processor is an inherently hard task, which consumes a lot of effort from a

pure practical and engineering standpoint, in addition to the scientific and

theoretical hurdles. In order to reduce the implementation effort, we used readily

available IP (here: intellectual property) as far as possible and tried to get along with

optimized solutions only in the design and implementation of the FlexPath-specific

performance-critical entities. In turn, some of the out-of-the-box implementations

may not be performance-optimal as they have not been specifically optimized for a

high performance use case. The same also holds true for the software development

process. While we initially tried to build the IP stack for the two PowerPC cores on

the lightweight IP stack [95] supported by Xilinx; we discovered that this solution

had several severe drawbacks. At first, data plane and control plane functions were

not separated as the software was originally intended for an embedded

microcontroller scenario with TCP/IP communication functions rather than

implementation of a router. Therefore, it was not possible to execute the code on

several processors in parallel, while sharing a common configuration among the

cores. In addition, the stack also lacked an IPsec implementation, which we wanted

to include for demonstrating the effects of different networking applications on the

overall system performance. Finally, we ended up implementing our own stack with

some control plane functions centralized on one PowerPC and a set of data plane

functions that can be executed on both processors. Although the structure chosen

for this implementation basically matches the architecture found in parallel

processor cluster NPs, it is a plain C-code program, which is compiled with the

standard EDK/gcc tool chain and has not been specially optimized for maximum

performance, e.g. by heavily using inline assembly. In addition, as the two PowerPC

processors execute different executables (they share the same packet processing

functions, but the Control Plane executable includes additional code and the

initialization routines and Packet Distributor drivers are slightly differently configured

for the two processors), the achievable forwarding performance is not equal,

probably due to non-linear effects when compiling and linking the slightly different

code bases.

The second problem of the achievable measurement results are properly judging

their relevance as they would have to be compared to ASIC implementations from

the commercial domain. As mentioned before, the implementation of the

demonstrator could not be optimized as far as a competing commercial architecture

would be. In addition, we are constrained in our implementations by the FPGA

environment provided by Xilinx. The embedded PowerPC cores run at a clock

frequency of 200 MHz, which compares to 1.5 GHz in some commercial NPs.

Implementing the application-specific logic in FPGA technology, based on mapping

Chapter 6 - FlexPath NP Demonstrator

 177

logic functions to lookup-tables and interconnecting different functional entities by

means of the FPGA switching fabrics can not be compared to a standard cell ASIC

design flow, where the functionality is implemented in dedicated logic gates and the

wiring is also customized.

At this point, it is also important to stress that the FlexPath NP concept is claimed

as a general architectural extension to current network processors, and is not

constrained to implementation in an FPGA environment. The FPGA demonstrator

should be understood as a suitable tool for a university research group to easily (and

cheaply) achieve valid implementation results.

Finally, the results obtained by the demonstrator implementation deliver a good

insight into the behavior of the proposed FlexPath NP architecture, even though the

performance level is not competitive with current commercial designs. The flexibility

associated with the FPGA design flow also allows to (relatively) easily reconfigure

the device to implement different features and provide also a reference for the non-

FlexPath NP case. By doing this, the gain associated with the proposed

architectural enhancements can be quantified.

An initial effort was undertaken to implement Pre- and Post-Processor along with

the lightweight IP stack [95] to obtain first estimations for the system simulations as

presented in chapter 3.3.2.2. As the Virtex-II Pro FPGA board used for this initial

demonstrator had insufficient resources to implement an entire network processor in

it, we moved our efforts to the Xilinx ML410 development board [100], which

features a significantly larger Virtex-4 FX 60 device. The FPGA features two hard-

macro PowerPC cores and Gigabit Ethernet MACs. The configurable logic

comprises 25,280 slices with two Flip-Flops and two 4-input lookup tables each and

the device has 4,176 kb of embedded SRAM distributed over 232 BlockRAM

instances [101].

On the development board itself, there are two Gigabit Ethernet PHYs (one of them

connected to the FPGA via RGMII and the other one via SGMII using the high-speed

differential serial I/Os of the Virtex-4). In addition, there are two types of dynamic

memory: a 64 MB DDR-SDRAM and a 256 MB DDR2-SDRAM. We had to use the

DDR-SDRAM memory as shared memory for both the software and packet memory,

due to clock tree limitations. The involved clock region has to support different

clocks for the PowerPC hard cores, receive and transmit clocks for the two MAC

blocks plus the 100 MHz system clock for the PLB bus and all attached logic in

addition to the DDR clock signals needed for driving the memory interface. Using

the DDR2 memory would have been very attractive from the performance standpoint

as it has a 64 bit data bus that matches the PLB width. The DDR memory only

features a 32 bit data bus which reduces the available memory access bandwidth

for the NP demonstrator.

Chapter 6 - FlexPath NP Demonstrator

178

Figure 64: Photo of ML410 Development Board with Two Customized Extension Boards

We have produced two extension boards for the ML410, which are connected using

the personality module expansion ports. A smaller board routes 80 general-purpose

pins from the FPGA to 0.1" test headers for debugging and analysis of the

implemented designs with our Logic Analyzer. The second expansion boards

features a set of LEDs, a LCD and some push-buttons for visualization of the

internal state and parameters of the system and providing a simple means of I/O for

triggering various system configurations. Figure 64 shows a photo of the ML410

board with the extension boards as we have used it for our final measurements.

Chapter 6 - FlexPath NP Demonstrator

 179

6.2. FlexPath NP System Overview

Figure 65 shows the functional blocks and major data flow through the implemented

FlexPath NP demonstrator system as implemented on the ML410 development

board. The darker green colored modules in the hardware processing pipelines have

been implemented by me or by students under my supervision and I have added

top-level block diagrams for these modules in the Appendix section.

In
g

re
s
s

H
a

rd
w

a
re

 P
ro

c
e

s
s
in

g
 P

ip
e

lin
e

E
g

re
s
s

H
a

rd
w

a
re

 P
ro

c
e

s
s
in

g
 P

ip
e

lin
e

Post-Processor

DDR SDRAM

Controller
PowerPC 405

Ingress Path

Control

Packet Distributor

PowerPC 405

Egress Path

Control

Pre-Processor

NH Lookup

Eng.

2x Gigabit Ethernet

Receive Unit

Path Dispatcher

Context

Assembler

GEMACs + RX/TX FIFOs

Context Gen.

Eng.
SmartMEM

(DMA)

Processor Local Bus (PLB)

IRQ

Packet Descriptor

Packet Context (CII & CIO)

Packet Data

Traffic Manager

Figure 65: Building Blocks and Data Flow through FlexPath NP Demonstrator

The Pre-Processor is the first element in the Ingress Hardware Processing Pipeline.

It performs a round-robin receive port scheduling among the two attached MAC

ports. The extraction of relevant header fields happens in real-time as the packet is

read out from the MAC receive buffers. If the arriving packet is an IPv4 packet, the

next-hop lookup engine is triggered with the destination address. After the packet is

completely received and the integrity checks (packet length, IP checksum) are

passed, the Context Assembler as next downstream element is triggered.

Chapter 6 - FlexPath NP Demonstrator

180

The Context Assembler reads out the extracted context fields from the Pre-

Processor and consolidates the obtained information into a protocol-independent

format referred to as Raw Context (for details refer to Figure 88 in the Appendix). In

addition, a next-hop lookup result (hit or miss) has to be synchronized with the Raw

Context of the current packet. The Raw Context is forwarded to the Path Dispatcher

and Context Generation Engine for further use.

The functionality of the Path Dispatcher has already been extensively discussed in

chapter 4 of this dissertation, so I will not repeat this discussion here. A detailed

description of the reconfiguration interface, which is provided over the PLB bus, is

presented along with the detailed descriptions of the other modules in the Appendix.

After the classification result is determined by the Path Dispatcher, the information is

passed on to the SmartMem DMA engine, which may use this information for storing

the packet data in different memories. In the implemented version of the FlexPath

NP demonstrator, all packets are stored in the central shared DDR SDRAM memory.

The SmartMem DMA engine is discussed in detail in Daniel Llorente's dissertation

[108], but I have included a brief overview of its top-level components and external

interfaces in the Appendix to support understanding the module interactions in the

implemented demonstrator system.

The SmartMem delivers the packet descriptor (see Figure 91 in the Appendix)

containing the addresses of the memory locations, in which the packet has been

stored, along with the classification information obtained from the Path Dispatcher

to the Context Generation Engine. Depending on the further processing path of

the packet, a corresponding Context has to be saved in the main memory

depending on the subsequent processing element. If the packet is headed for one of

the PowerPC processors, a Context Information Input (CII) will be generated that

arranges the extracted packet header fields sorted by their relevance for IP

forwarding in a segment at the beginning of the first packet data segment. This data

can be read in by the processor in a single cache line transfer and as the fields are

already 32 bit aligned, the access efficiency is greater than if masking operations

would have to be carried out on the packet data section. In addition, as the Pre-

Processor has already executed integrity checks on the packet, the processor

doesn't have to check that again. However, if the packet is headed for AutoRoute, a

Context Information Output (CIO) is necessary that contains the Assembler-like

instructions for the Post-Processor that trigger replacement of the MAC addresses,

TTL decrement and IP checksum recalculation. The required instructions that will be

copied into the Context and the sequence, in which Raw Context words are copied,

are fully reconfigurable through another PLB slave attachment. More detailed

descriptions for the Context Generation Engine and the typically used CII/CIO

context contents are added in the Appendix.

Chapter 6 - FlexPath NP Demonstrator

 181

After the packet context has been stored in SDRAM, only the packet descriptor is

forwarded through the remaining modules of the NP. If a unit needs context or

packet data information, it can be obtained from the shared SDRAM. The Ingress

Path Control tags the packet descriptor with a continuous flow-specific sequence

number. As all arriving packets traverse the ingress pipeline in a strictly deterministic

fashion without being able to pass each other, the tagging records the precise

arrival sequence of the packets in the NP system. Further details about the Path

Control are found in Michael Meitinger's dissertation [107].

The Packet Distributor is the final element in the ingress hardware processing

pipeline and provides queuing and interrupt functions to allow an efficient

distribution of packets to their respective processing elements. Sixteen queues have

been provisioned for CPU-bound traffic, each queue holding up to 16 packet

descriptors. By configuration in the interrupt controller, each queue may be

associated with either processor or packets may be sprayed by interrupting both

processors, while packet descriptors are present in the queue. An additional queue

is provisioned for AutoRoute traffic and Discard packets, from which packet

descriptors are written over the PLB bus interface to either the Receive Unit

(AutoRoute) or the SmartMem (silent discards). A detailed discussion of the Packet

Distributor can be found in Michael Meitinger's dissertation [107].

In the FlexPath NP demonstrator, the Network Processing Complex consists of the

two PowerPC cores and an AutoRoute path. The first PowerPC core, which is used

as a plain data plane processor, runs the IP stack with IPv4 forwarding code. By

means of compiler flags, the stack can be configured to either use the FlexPath-

specific hardware-offload features by using CII and / or CIO information for the

forwarding or process the packets by accessing the packet data. The second

PowerPC shares the same IP forwarding functionality, but it also takes over Control

Plane functions. After system startup, it configures the Path Dispatcher, Context

Generation Engine and Packet Distributor. If an active load balancing strategy is

chosen for the actual scenario (e.g. AHH or HLU), it periodically extracts load

measurements and updates the load balancing tables in the Path Dispatcher. Even

in static load assignment, the Control Plane processor regularly updates load figures

on the LCD-display of the ML410 extension board (see Figure 64). Due to the

additional functionality of the Control Plane software, the forwarding performance of

the second CPU is slightly smaller than that of the data plane processor. The IPsec

stack functionality, which was implemented in addition to the IP forwarding

functions (see [106] and section 5.3.1) had to be removed, as the en- and decryption

functions work on the 64 byte segmentation of the previous Buffer Manager version

and could not be updated to the SmartMem memory management during the final

months of the FlexPath NP project. Therefore, the final measurements can only be

performed with QoS-aware IP forwarding.

Chapter 6 - FlexPath NP Demonstrator

182

Once the packets have passed the Network Processing Complex, the Packet

Descriptors are sent to the Receive Unit as first element in the Egress Hardware

Processing Pipeline. The Receive Unit is essentially a small FIFO that may provide a

backpressure towards the PLB interface and re-serializes the flow of packets

through the Egress Pipeline.

The next function in the egress side of the NP is the Egress Path Control. Here, the

sequence numbers in the packet descriptors are checked on correct transmit

sequence, and out-of-order packet descriptors are queued in reordering queues to

restore correct packet order. More information on the Path Control can be found in

[107].

Next, packets are forwarded to the Traffic Manager, which in the demonstrator

supports two queues per physical port (high and low priority) that resolve output

port contention. The queues can hold up to 128 packet descriptors and the Traffic

Manager performs a strict priority-based round-robin scheduling and traffic policing

at 1 Gbit/s per port. A more detailed description of the Traffic Manager is available

in the Appendix section.

As packet descriptors are scheduled for retransmission from the NP, they are again

passed to the SmartMem DMA engine. The packet data and the (optional) CIO

information for the Post-Processor is read from the SDRAM memory and forwarded

to the Post-Processor.

The Post-Processor is able to perform basic packet modifications like field

substitutions, insertions, deletions and TTL decrement and IP checksum calculation

operations. The modifications are supplied as CIO information, which may be

generated either by the Context Generation Engine (as in case for AutoRoute

packets) or the PowerPC processors (e.g. as an offload of tunnel header insertions).

More information about the Post-Processor may also be found in Michael

Meitinger's dissertation [107].

Table 21: FPGA Synthesis Results of Combined FlexPath / SmartMem Demonstrator

System

Resource Type Resource Quantity

FPGA Slices 19,391 of 25,280 (76.35%)

 Slice Flip-Flops 17,573 of 50,560 (34.76%)

 Slice LUTs 31,319 of 50,560 (61.94%)

FPGA BlockRAM memories 124 of 232 (53.45%)

PPC405 Hard Macros 2 of 2 (100.00%)

1 Gbit EMAC Hard Macros 2 of 2 (100.00%)

Critical Path 11.428 ns (i.e. 87.507 MHz)

Chapter 6 - FlexPath NP Demonstrator

 183

The before-mentioned FlexPath-specific hardware modules are implemented in a

system with the two PowerPC processor cores, PLB bus, Ethernet MACs and the

multi-port memory controller provided in the Xilinx EDK IP library. The synthesis

results of the entire system, including debug interfaces are summarized in Table 21.

In contrast to the post-synthesis estimate of only 87.5 MHz, the Place and Route

tools are able to bring the final design slightly above the 100 MHz margin, so that

we are able to run the FlexPath demonstrator at 100 MHz for most of the logic

elements, while the PowerPC cores run at 200 MHz.

Chapter 6 - FlexPath NP Demonstrator

184

Chapter 6 - FlexPath NP Demonstrator

 185

6.3. Measurement Setup

In order to stimulate the NP system, I generate IP traffic with a Spirent SPT-2000

network tester [103], which is also analyzing the traffic forwarded by the device

under test and allows to easily gather crucial performance information like packet

loss rates, forwarding speed, packet latencies and jitter. The network tester also

features automated test runs based on the RFC 2544 [104] benchmarking suite.

x.x.192.x - x.x.255.x

x.x.64.x - x.x.127.x

x.x.128.x - x.x.191.x

x.x.0.x - x.x.63.x

Spirent SPT-2000
FlexPath NP

(Xilinx ML410)

Test Port 1

Test Port 2
Port1

(SGMII)

Port0

(RGMII)

Gigabit Ethernet

FlexPath Port0 (RGMII):

IP: 192.168.0.6

MAC: 00:0A:35:01:77:26

FlexPath Port1 (SGMII):

IP: 192.168.8.4

MAC: 00:0A:35:01:77:27

Router 1:

IP: 192.168.54.35

MAC: 00:11:22:33:44:01

Router 2:

IP: 192.168.154.37

MAC: 00:11:22:33:44:02

Router 3:

IP: 192.168.72.5

MAC: 10:AA:BB:CC:DD:01

Router 4:

IP: 192.168.200.49

MAC: 10:AA:BB:CC:DD:02

Figure 66: Test and Measurement Setup

The FlexPath NP demonstrator is connected to the network tester using both

Ethernet links of the FPGA platform as shown in Figure 66. While each MAC of the

FlexPath NP is assigned one IP and MAC address, the Spirent Test Center allows

provisioning multiple nodes to be aggregated behind each physical test port

interface. In order to obtain a simple measurement scenario, we have added two

Routers for each physical test port, which may be reached using distinct MAC and

IP addresses. It is important to notice, that the routers and the FlexPath NP

prototype do not exchange real routing protocol messages between each other.

Instead, the Routers emulated by the Spirent network tester serve simple as sources

and destinations of IP packets that are to be forwarded by the FlexPath NP data

path.

Chapter 6 - FlexPath NP Demonstrator

186

The routing table in the FlexPath next-hop lookup engine and the algorithm in the IP

stack supports this test setup by inspecting only the third octet of the destination IP

address as shown in Table 22 instead of performing a longest prefix match

operation. Traffic generated by the network tester will always be sent to the

FlexPath NP, where the output port will be determined based on the destination

address in the IP header. Thus it is possible for a packet to be sent back to the

network tester via the same physical link or to be forwarded to the other port

depending on the IP destination address. In any case, the FlexPath NP will perform

all necessary packet modifications like exchanging the MAC addresses and

updating the TTL and checksum values.

Table 22: FlexPath NP Next-Hop Lookup Engine Routing Table

Third Octet Egress Port MAC Destination Address

0 - 63 0 (RGMII) 00:11:22:33:44:01

64-127 1 (SGMII) 10:AA:BB:CC:DD:01

128-191 0 (RGMII) 00:11:22:33:44:02

192-254 1 (SGMII) 10:AA:BB:CC:DD:02

255 None (i.e. test case for next-

hop miss)

Result must be determined

by software, which would

forward these packets to

Router 4

The provisioning of two router devices per Spirent test port allows easily

implementing traffic patterns that are forwarded on the AutoRoute or CPU paths. By

convention, rule bases in the Path Dispatcher can later be configured in a way that

all packets destined for Routers 1 and 3 will be forwarded by the processors and

packets destined for Routers 2 and 4 will be taking the AutoRoute path through the

FlexPath NP.

Chapter 6 - FlexPath NP Demonstrator

 187

6.4. Processor-centric Reference Measurements

Figure 67 and Figure 68 show the results of an RFC 2544 throughput test performed

on the reference setup, with arriving traffic being directed over either PowerPC

(designated as Data Plane or Control Plane) or sprayed over both processors.

Reference NP Throughput

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400 1600

Packet Size (B)

N
P

 T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Data Plane

Control Plane

Packet Spraying

Figure 67: Processor-centric NP Throughput

For only a single CPU in the system, a linear increase of the maximum achievable

throughput can be observed, which indicates that the system yields a constant

packet forwarding rate. As IP forwarding is not dependent on the length of the

individual packets, the constant forwarding rate can be directly related to the

processing delay caused in the processor(s). The constant forwarding performance

can also be seen well in Figure 68. The Control Plane processor achieves roughly 80

kpps, while the Data Plane Processor is able to forward around 83 kpps. This

divergence can be explained by the fact that the code base for the two processors

is slightly different and the Control Plane processor is interrupted periodically (every

50 ms) to gather load information of the two cores and display them on the LCD

display of the ML410 extension board. As the packet size is increased towards

maximum length Ethernet frames with 1518 bytes, the throughput on the shared

PLB bus and the memory interface is increasing and in turn the processing

performance of the CPUs is slightly decreasing. This observation is in line with the

decline in processing performance predicted by the system level simulations in

chapter 3.3.2.3 (Figure 28), although the absolute figures (30 kpps in the system

simulations) could be increased by a factor of 2.7. This increase can be explained by

the differences in the hardware platform, moving from the Virtex-II Pro platform to

the Virtex-4 FPGA. The final FlexPath NP demonstrator features a faster DDR-

Chapter 6 - FlexPath NP Demonstrator

188

SDRAM as shared packet memory device. In addition, the SmartMem DMA engine

provides better performance compared to the previously used Buffer Manager (see

discussions in [108]) and the software stack is more optimized than the LwIP stack

with which the system simulation model was calibrated.

Reference NP Forwarding Performance

0

20

40

60

80

100

120

140

160

180

0 200 400 600 800 1000 1200 1400 1600

Packet Size (B)

F
o

rw
a

rd
in

g
 P

e
rf

o
rm

a
n

c
e

 (
k

p
p

s
)

Data Plane

Control Plane

Packet Spraying

Figure 68: Processor-centric NP Forwarding Rate

When the incoming traffic is sprayed among both PowerPC processors in the

system, the forwarding rate is increased to 160 kpps, which is 98.2% of the sum of

the individual forwarding rates. As we can see, this figure is even better than the

prediction made during the system simulations in chapter 3.3.2.3, which was 91.4%,

but again these figures were based on a different hardware platform with a less

efficient memory subsystem.

However, when the packet size increases beyond 256 bytes, the resulting higher

loads on the bus and memory interfaces reduce the forwarding performance and we

reach a maximum throughput of 1460 Mbps for 1280 byte packets. The further

sharp decline for the largest 1518 byte packets is due to the reduced bursting

effectiveness experienced in the SmartMem DMA operations for packet sizes, which

are not powers of two and are discussed in detail in Daniel Llorente's dissertation

[108].

Chapter 6 - FlexPath NP Demonstrator

 189

6.5. Hardware-offload Aspects of FlexPath NP

In the following chapter, I will successively evaluate the various levels of hardware

offload associated with the FlexPath NP concept, and discuss their influence on

improving the overall system performance.

6.5.1. Forwarding Performance Using Pre-Processor

The first step in hardware offloading is achieved by moving the ingress packet

integrity checks to the Pre-Processor and using the extracted header fields from the

input context (CII) in the forwarding software. In this first step, the software still has

to perform the necessary egress side packet manipulations directly on the packet

data, i.e. the Post-Processor is not yet used for the forwarding task.

The Path Dispatcher is now configured in a way that supports differentiating corrupt

packets, control plane packets (e.g. ARP or ICMP) and standard IP forwarding

packets. In addition, AutoRoute is only enabled for flows with a valid lookup result

and that are destined to a certain IP destination address range. This allows exposing

the system to various AutoRoute vs. CPU forwarding shares by using different flows

from the Network Tester with varying bit rates. The configured HDGA graph is

depicted in Figure 69.

Disc DiscCP: Ctrl

00 0
1 10

LU-Flag=1

11

Disc-Flag = 1

Ctrl-Flag = 1

0 1

DP:

spray
IP_dst&0.0.255.0>0.0.100.0

0 1

IPfwd * Egr_Port=1

0 1

AutoRoute

Port0

AutoRoute

Port1

*: "IPfwd" will be configured either as

- DP: IPfwd (dediacted PPC0)

- CP: IPfwd (dedicated PPC1)

- DP spraying (both PPCs)

Figure 69: HDGA Graph for Static FlexPath FPGA Measurements

In contrast to the software reference scenario presented in chapter 6.4, the Context

Generation Engine has to store the 60 byte CII information according to Figure 93 (in

the Appendix section) in the DDR-SDRAM. The processors retrieve this context to

determine the appropriate actions, and write the modifications back into the packet

data segment of the memory. These additional operations lead to a significant

Chapter 6 - FlexPath NP Demonstrator

190

overhead in required memory access bandwidth, especially for small packets, where

the 60 byte CII almost doubles the required space of the packet data itself.

Initially, the network tester generates traffic with equal shares among four

connections between the following routers (see Figure 66):

– 00-CPU (loopback on Port0, CPU forwarding): Router2 to Router1

– 01-CPU (switching Port0 to Port1, CPU forwarding): Router1 to Router3

– 10-CPU (switching Port1 to Port0, CPU forwarding): Router4 to Router1

– 11-CPU (loopback on Port1, CPU forwarding): Router4 to Router3

If the traffic volume on each of these connections is kept equal, there will be no

output port contention effects by exceeding 1 Gbit/s for the physical interface when

scaling the system beyond the gigabit limit. In addition, by combining traffic from

both physical interfaces, the latency differences caused by the different MAC cores

(the SGMII MAC causes a higher latency than the RGMII MAC) can be averaged out.

The results of the RFC 2544 throughput test for this scenario are shown in Figure 70

and Figure 71.

FlexPath NP with Pre-Processor

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400 1600

Packet Size (B)

N
P

 T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Data Plane

Control Plane

Packet Spraying

Figure 70: FlexPath NP Throughput using CII (Pre-Processor)

Chapter 6 - FlexPath NP Demonstrator

 191

FlexPath NP w/ Pre-Processor

0

50

100

150

200

250

300

350

0 200 400 600 800 1000 1200 1400 1600

Packet Size (B)

F
o

rw
a

rd
in

g
 P

e
rf

o
rm

a
n

c
e

 (
k

p
p

s
)

Data Plane

Control Plane

Packet Spraying

Reference (spraying)

Figure 71: FlexPath NP Forwarding Rate using CII (Pre-Processor)

Offloading the processors by using the results of the pre-processing steps in the

FlexPath NP increases the forwarding performance of the single processors by

roughly 75% to 144 kpps for the Data Plane processor and 143 kpps for the Control

Plane processor. This increase is tripled in comparison to the estimated figures in

chapter 3.3.2.4, and this may be explained by the fact that the currently

implemented software stack is much smaller than the original lightweight IP stack,

on which the application profiling in the system simulation has been based. The

amount of instructions necessary to fulfill e.g. the IP header checksum verification

may be assumed to be identical across the implementations. However, as the same

amount of instructions is offloaded from a smaller overall program, the relative

offload gain increases.

Due to the higher forwarding performance provided by the CPUs, the system

reaches higher data rates already with smaller packet sizes. In addition, using CII

information adds to the overall necessary memory accesses. In consequence, a

single processor is now sufficient to exhaust the available memory access

bandwidth for packets beyond the 1280 byte packet measurement, and we see the

deteriorating performance effect of increasing bus and memory congestion on the

forwarding rate for packet sizes between 256 bytes and 1280 bytes, where the

single processor performance is reduced almost linearly from 144 kpps to 125 kpps.

Regarding packet spraying among both processors, the initial forwarding rate of 286

kpps (which is 99.6% of the sum of the individual forwarding rates) cannot be

maintained through larger packet sizes. The peak bandwidth of the offloaded

system is reached for the 1280 byte measurement at 1505 Mbit/s. The convergence

Chapter 6 - FlexPath NP Demonstrator

192

of the measurement results for packet spraying of the offloaded and reference

scenarios at 1280 byte and 1518 byte packets supports the assumption that the

current demonstrator system is running into a memory access bandwidth bottleneck

around 1.5 Gbit/s. Still, when compared with the system simulations in chapter

3.3.2.4, the system throughput could be raised by 50% from 1 Gbit/s, mainly due to

the improved timing of the DDR-SDRAM on the Virtex-4 platform and the advanced

memory management algorithms implemented in the SmartMem buffer manager.

6.5.2. Forwarding Performance Using Pre- and Post-Processors

The next step in applying hardware-offload capabilities is to remove the necessity

for the processors to perform the packet manipulations on the packet data itself, but

instead simply generate an appropriate output context (CIO), which will then be

executed by the Post-Processor in the NP egress data path pipeline. Figure 72 and

Figure 73 show the results of the corresponding RFC 2544 throughput test.

FlexPath NP w/ Pre- and Post-Processor

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400 1600

Packet Size (B)

N
P

 T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Data Plane

Control Plane

Packet Spraying

Figure 72: FlexPath NP Throughput using CII and CIO (Pre- and Post-Processor)

The NP throughput chart reveals a very steep increase of the supported bit rate for

packet sizes smaller than 512 bytes, where an aggregated throughput of 1.2 Gbit/s

is reached. After this point the packet spraying graph shows a significantly smaller

increase before reaching the highest throughput for 1280 byte packets at 1430

Mbit/s.

Chapter 6 - FlexPath NP Demonstrator

 193

FlexPath NP w/ Pre- and Post-Processor

0

50

100

150

200

250

300

350

0 200 400 600 800 1000 1200 1400 1600

Packet Size (B)

F
o

rw
a
rd

in
g

 P
e
rf

o
rm

a
n

c
e
 (

k
p

p
s
)

Data Plane

Control Plane

Packet Spraying

Packet Spraying (CII only)

Reference (spraying)

Figure 73: FlexPath NP Forwarding Rate using CII and CIO (Pre- and Post-Processor)

When looking at the forwarding rate comparison in Figure 73, several interesting

effects may be seen.

At first, the forwarding performance of a single Control or Data Plane processor

(160.5 kpps) matches the forwarding performance for spraying among both

processors in the reference scenario described in chapter 6.4. In other words, by

using all provided hardware-offload features of a FlexPath NP, the processing

performance of each core is effectively doubled. If the system was scaled towards a

real multi-core scenario - as in virtually all current commercial NP devices - adding

the Pre- and Post-Processor units can help save half of the programmable

processor resources on the chip, or double the processing capability of already

existing cores to implement more computationally challenging networking

applications.

In relation to the previously presented offload of the packet integrity checks to the

Pre-Processor unit, the forwarding performance is increased by a further 12%. In

line with the estimations presented in chapter 3.3.2.2, the main contribution is

coming from the Pre-Processor and CII data structure, such that the effort of

implementing a Post-Processor might be avoided, as long as a system designer

focuses on a software-centric NP architecture. Of course, the Post-Processor is a

necessary pre-requisite for the AutoRoute capability of a FlexPath NP, which will be

analyzed later in section 6.5.3.

However, the gains achieved by using CII and CIO for software processing are

limited to packets shorter than 512 bytes. Beyond the 768 byte measurement, the

Chapter 6 - FlexPath NP Demonstrator

194

packet spraying performance of the CII-only scenario is slightly higher than that of

the combined CII and CIO setup. Both forwarding rates are then linearly decreasing

due to the previously identified memory access bandwidth bottleneck. This effect

can again be explained with the involved memory bottleneck: if the processors

generate the CIO data structure, which is physically stored in the same section as

CII in the first segment of the packet, the processors are relieved from reading in the

packet header and performing the necessary bit-level manipulations. However, the

SmartMem buffer manager has to retrieve the additional context information when

retransmitting the packets, and I have already shown in 3.3.2.2 that memory reads

from DRAM are more time-consuming than writes. In addition, the output context

generated by the processors will only consist of eight words (cf. Figure 94 in the

Appendix section), which is also less than what can be transferred over the PLB bus

in a maximum length burst of 16 consecutive 64 bit doublewords. In summary, it can

be stated that while using the Post-Processor for software-based IP forwarding

brings a little relief for the processing resources, the overheads associated with the

additional CIO data structure limit the overall system performance, if a memory

bottleneck is present.

6.5.3. Forwarding Performance Using AutoRoute

Figure 74 and Figure 75 illustrate the results of the RFC 2544 throughput test for

AutoRoute, which is an alternative for software-based IP forwarding in FlexPath NP.

The network tester is again configured to mix four different flows, in order to

generate several AutoRoute connections with balanced MAC latency and avoiding

output port contention. The resulting flows are resembling the CPU-centric scenario

used before, replacing destination routers 1 and 3 by 2 and 4 in order to have them

routed via AutoRoute by the Path Dispatcher rule base shown in Figure 69.

– 00-AR (loopback on Port0, AutoRoute): Router1 to Router2

– 01-AR (switching Port0 to Port1, AutoRoute): Router2 to Router4

– 10-AR (switching Port1 to Port0, AutoRoute): Router3 to Router2

– 11-AR (loopback on Port1, AutoRoute): Router3 to Router4

As AutoRoute packets are forwarded exclusively by hardware units, which are

implemented as ingress and egress data path pipelines of the NP, the performance

is dominated by the DMA times consumed in the SmartMem buffer manager during

reception and retransmission and for storing the CIO context (cf. Figure 94 in the

Appendix section) by the Context Generation Engine. In addition, the packets may

experience queuing delays in the Traffic Manager, if there is output port contention.

Pre- and Post-Processor work on the packet data on-the-fly and add only a few

cycles of latency to the packet. Context Assembler, Path Dispatcher and Context

Generation Engine each finish their work within a minimum frame time in order to

meet the real-time requirements of the data path pipeline.

Chapter 6 - FlexPath NP Demonstrator

 195

FlexPath NP w/ AutoRoute

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400 1600

Packet Size (B)

N
P

 T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

AutoRoute

Reference (spraying)

CII & CIO (spraying)

Figure 74: AutoRoute Throughput

FlexPath NP w/ AutoRoute

0

100

200

300

400

500

600

700

800

900

0 200 400 600 800 1000 1200 1400 1600

Packet Size (B)

F
o

rw
a

rd
in

g
 P

e
rf

o
rm

a
n

c
e
 (

k
p

p
s

)

AutoRoute

Reference (spraying)

CII & CIO (spraying)

Figure 75: AutoRoute Forwarding Performance

The packet forwarding rates are almost constant at around 830 kpps for 64, 96 and

128 byte packets, which can be transferred between the memory and the

SmartMem in a single burst transfer. Although the length of the individual burst

transfers increases among these three packet sizes, the delay is dominated by

constant overheads like bus arbitration and memory commands (e.g. RAS/CAS). A

steep degradation of the performance can again be observed for the 160 to 256

Chapter 6 - FlexPath NP Demonstrator

196

byte packets, which require two burst transfers. A more detailed analysis of these

effects can be found in chapter 5.4 of Daniel Llorente's dissertation [108].

Beyond the 512 byte packet measurement, the curves of the AutoRoute and

processor-based forwarding performance converge on the previously presented

memory bottleneck.

Considering the achievable data rates (Figure 74), it is interesting to observe that

AutoRoute performs better than the two processors in the FlexPath scenario. This

difference, which is around 80 Mbps for 768 and 1024 byte packets, 46 Mbps for

the 1280 byte packets and 29 Mbps for the 1518 byte packets, can be explained

with the absence of additional memory accesses by the two PowerPC processors.

In case of the 1518 byte packets, forwarding by the software reference scenario (i.e.

without context!) performs best with 1366 Mbps, followed by AutoRoute with 1316

Mbps and the FlexPath software with 1287 Mbps.

6.5.4. Packet Latencies

All previously presented measurements were RFC 2544 throughput tests applied to

the different configurations of our FlexPath demonstrator yielding maximum

achievable packet forwarding rates and throughput. Another important

characteristic of an NP system is the latency imposed on the packets traversing the

system. In addition to the processing delay imposed by the processors and the

DMA delays of the SmartMem, queuing can play an important role, especially when

the system is approaching the maximum capacity of a critical system resource. This

capacity limit might either refer to the maximum memory transfer bandwidth, which

is also packet size dependent as shown in Figure 74 (AutoRoute); or a maximum

packet rate as in case of the different processor bottlenecks shown in Figure 68,

Figure 71 and Figure 73. However, in a real packet forwarding system, packets with

all sorts of different packet sizes will be present at the same time and it may happen

that on a very small time scale both data rate and packet rate maxima may be

exceeded by a sequence of short or long packets, while over a longer timeframe the

traffic might still be forwarded in a lossless fashion.

In the following sections, I will therefore present a series of average latency

measurements plotted against an increasing amount of traffic for the Reference and

FlexPath scenarios described before. As we have seen in previous results,

combining the processing power of both PowerPCs with the FlexPath forwarding

software exceeds the memory access bandwidth for packets larger than 512 bytes.

Therefore, I decided to run these measurements with only the data plane processor

forwarding packets (using the reference software from chapter 6.4 or the FlexPath

software using both CII and CIO) and AutoRoute in addition to the FlexPath software

processing.

Chapter 6 - FlexPath NP Demonstrator

 197

The Reference software and FlexPath without AutoRoute measurements were

stimulated with the 01-CPU and 10-CPU flows, each carrying 50% of the aggregate

traffic and using a simple IMIX [105] packet size distribution, i.e. packet sizes are not

any longer uniform but randomly generated with a distribution of 64B:576B:1518B

packets of 7:4:1. For the FlexPath measurements with AutoRoute, the 01-AR and

10-AR flows are added, carrying half of the AutoRoute traffic share each, the

remainder of the traffic is generated by the 01-CPU and 10-CPU flows.

10

100

1000

0 100 200 300 400 500 600 700 800 900 1000

Offered Aggregate Load (Mbps)

A
v
e

ra
g

e
 P

a
c

k
e

t
L

a
te

n
c

y
 (

µ
s

)

Reference 1 CPU FlexPath 1 CPU 0% AutoRoute (CPU)

FlexPath 1 CPU 12.5% AutoRoute (CPU) FlexPath 1 CPU 12.5% AutoRoute (AR)

FlexPath 1 CPU 25% AutoRoute (CPU) FlexPath 1 CPU 25% AutoRoute (AR)

FlexPath 1 CPU 50% AutoRoute (CPU) FlexPath 1 CPU 50% AutoRoute (AR)

Reference:

225 Mbps FlexPath 0%:

375 Mbps

FlexPath 25%:

525 Mbps

FlexPath 50%:

750 Mbps

12

18

26

Figure 76: Reference and FlexPath System Latencies for IMIX Traffic (Part I)

Figure 76 shows a lower part of the measurements with aggregate offered traffic

load increasing from 75 Mbps in 75 Mbps increments to 975 Mbps. At aggregated

loads below 200 Mbps, the system is in underload in all measured scenarios, and

the latencies on the three different paths through the NP system are minimal. For the

AutoRoute packets the latency is 11.8 µs, the Reference software forwards them in

26.2 µs and the FlexPath software with all possible hardware-offload features

accomplishes the task in 18.4 µs. The figures are measured by the network tester

from transmission over network tester port to reception on the network tester, i.e.

includes all transmission and MAC delays, queuing delays, DMA, latency of the

FlexPath NP hardware pipeline and the software processing latency.

As the offered load in the reference measurement exceeds 225 Mbps, the processor

is not any longer capable to process the incoming packets. The buffers in the

Packet Distributor fill up and the latency levels off at 320 µs. If the traffic load is

further increased, the system latency, which is only recorded for the actually

forwarded packets, remains constant although an increasing share of packets is

discarded by the NP.

Chapter 6 - FlexPath NP Demonstrator

198

A similar effect can be observed for the FlexPath software measurement, however,

due to the lower processing latency (remember that FlexPath is able to forward

packets at twice the rate as the reference solution!) the cutoff point, where packets

start being queued in front of the processor complex is shifted to 375 Mbps. A more

gradual increase of the average latency can be observed, visualizing the range, in

which the Packet Distributor queues are temporarily holding some descriptors, but

are regularly emptied, e.g. when the processor is able to catch up with the load

during reception of one or several maximum size packets. The maximum latency of

roughly 190 µs is reached only beyond 675 Mbps.

When introducing AutoRoute traffic into the traffic mix, the cutoff points, when the

processors starts being overloaded is moved further to the right, as the processing

capacity of the NP system is increased. The processing latency of the AutoRoute

packets slowly increases with rising amounts of traffic because of congestion on the

PLB bus and memory interface. In addition, collisions in the Traffic Manager, when

CPU packets and AutoRoute packets reach the egress data path pipeline at the

same time also increase the latency. The almost parallel increase of the 50%

AutoRoute measurement (light blue curves in Figure 76) beyond 750 Mbps suggests

that the system is again approaching the memory access bandwidth bottleneck,

which can be seen when comparing the scenarios under higher load as shown in

Figure 77.

10

100

1000

10000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Offered Aggregate Load (Mbps)

A
v
e

ra
g

e
 P

a
c

k
e

t
L

a
te

n
c

y
 (

µ
s

)

Reference 1 CPU FlexPath 1 CPU 0% AutoRoute (CPU)

FlexPath 1 CPU 25% AutoRoute (CPU) FlexPath 1 CPU 25% AutoRoute (AR)

FlexPath 1 CPU 50% AutoRoute (CPU) FlexPath 1 CPU 50% AutoRoute (AR)

FlexPath 1 CPU 75% AutoRoute (CPU) FlexPath 1 CPU 75% AutoRoute (AR)

Figure 77: Reference and FlexPath System Latencies for IMIX Traffic (Part II)

For the two measurements with 50% and 75% AutoRoute traffic share, a steep

increase of the latency can be observed around 1050 Mbps. Here, the Traffic

Manager buffers are suddenly filled, as the packets are received (and forwarded)

Chapter 6 - FlexPath NP Demonstrator

 199

faster than the transmit side of the SmartMem can retrieve the packets and packet

contexts from memory. As the Traffic Manager acts as output buffer in the system,

the queues are much deeper than those in the Packet Distributor, in order to

efficiently tackle temporary output port contention and QoS scheduling. In turn, the

latency penalty observed for packets that entered an almost full output queue is

higher, and we can observe a saturation of the latency around 1100 µs, i.e. 1.1 ms.

The measurement taken for 25% AutoRoute share shows a comparable effect

beyond 1350 Mbps. This can be explained by the fact that much more packets are

lost on the overloaded CPU path, and thus the overloaded processor works like a

policer in front of the egress pipeline of the NP.

In the non-AutoRoute scenarios (red and black curves in Figure 77), the forwarding

performance of the single CPU is not sufficient to saturate the memory, and thus the

latency of the packets remains almost constant at the level described in Figure 76.

6.5.5. Packet Loss

In order to better evaluate the effects of packet loss in the overloaded queues,

Figure 78 plots a "transfer function" of the traffic for the same scenario as described

before.

Offered vs. Forwarded Load (25% AutoRoute)

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Offered Load (Mbps)

F
o

rw
a

rd
e

d
 L

o
a

d
 (

M
b

p
s
)

AR RX Mbps (25% AR)

CPU RX Mbps (25% AR)

Lossless System

Lossless AutoRoute

Lossless CPU

Lossless System CPU Losses / AutoRoute Lossless

Losses on all Paths

Figure 78: Packet Transfer Function for FlexPath with 25% AutoRoute

Here, the x-axis is again showing the aggregate of all four traffic streams increasing

from 100 Mbps to 1500 Mbps. On the y-axis the receive rate at the network tester is

shown, differentiated by the path (or flows) that the respective packets should have

taken through the FlexPath NP demonstrator. While the system is in underload, the

Chapter 6 - FlexPath NP Demonstrator

200

forwarded load equals the transmitted load; the identity function is also shown as a

black line in Figure 78. Just above 600 Mbps, the processor starts being overloaded

and packets are lost. This effect is emphasized by the divergence of the red traffic

share from the thick red line, which indicates the lossless case for 75% of the

offered load (i.e. the share of packets going over the CPU path). As the traffic

increases, the CPU is eventually able to forward more traffic, but the gap between

the ideal (lossless) case and the actually forwarded traffic amount widens.

In order to visualize the first losses on the AutoRoute path, the thick green line is

introduced, which adds 25% of the offered load aggregate (i.e. the AutoRoute traffic

share) to the (lossy) CPU forwarding rate. In this case, we observe the first

divergence around 1420 Mbps, which is also well in line with the observations in

Figure 77, where the 25% AutoRoute curves enter the memory bottleneck saturation

around 1400 Mbps. When the memory bottleneck is first reached in the system, the

total forwarded load is even reduced by further increasing the input load due to

congestion that slows all NP modules accessing the shared memory resources.

Offered vs. Forwarded Load (50% AutoRoute)

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

Offered Load (Mbps)

F
o

rw
a

rd
e

d
 L

o
a

d
 (

M
b

p
s
)

AR RX Mbps (50% AR)

CPU RX Mbps (50% AR)

Lossless System

Lossless AutoRoute

Lossless CPU

Lossless System

CPU Losses / AutoRoute Lossless

Losses on all Paths

Figure 79: Packet Transfer Function for FlexPath with 50% AutoRoute

I have repeated the same measurements also for the 50% AutoRoute case, where

the CPU bottleneck is reached later around 910 Mbps and the memory saturation

starts earlier at roughly 1100 Mbps aggregated traffic. The results are shown in

Figure 79.

Chapter 6 - FlexPath NP Demonstrator

 201

6.6. Load Balancing Algorithms on FlexPath NP

After having thoroughly investigated the individual performance benefits of the

various hardware-offload features of a FlexPath NP, I would like to focus on the real-

world measurement results for the load balancing schemes discussed in chapter 5.

The originally developed IPsec software stack, that was used for profiling in the

simulations of [72] and measurements published in [106], has not yet been adapted

to the current version of the SmartMem buffer manager with its optimized packet

memory organization. Therefore, I will focus in the following only on QoS-aware IP

forwarding (using the DSCP value in the IP header to differentiate high priority from

best effort traffic classes). As we have no means to replay real-world Internet traces

as used for the load balancing simulations, we again have to resort to using traffic

generated with the network tester. However, the kind of fixed load, fixed pattern

traffic streams used in the previous two chapters would not lead to variations in the

traffic volume needed to demonstrate the adaptation effects inherent in each load

balancing scheme.

Table 23: Characteristics of Best Effort Traffic Flows

Flow Group Packet Size (B) Active Burst Period

(ms)

Inter Burst Gap (in % of active

burst period)

1 78 100 5

1 160 100 11

1 256 100 19

2 78 80 7

2 160 80 13

2 256 80 9

3 78 140 17

3 160 140 19

3 256 140 27

4 78 180 27

4 160 180 25

4 256 180 23

In order to generate variations in the different logical connections that have to be

addressed by the different load balancing techniques, the network tester is

configured to generate traffic in a bursty fashion. For a certain period of time, a burst

of same length packets are generated for a given period of time and a specified

inter-packet gap, followed by a transmission pause, in which no packets are

transmitted. By superposing several of these bursts with varying intensity and

periods, a quasi-random behavior is achieved. Table 23 lists the timing parameters

of four groups of logical flows with three distinct packet sizes per flow that is used

for the best effort traffic class generation. Based on these traffic parameters, the

Chapter 6 - FlexPath NP Demonstrator

202

actual burst lengths (in packets) and inter-frame gaps (within a burst) can be derived

for different average target bit rates. Due to the gaps within each flow group, short

term bit rates are higher than the average bit rate and the hashing-based load

balancing techniques are forced to rebalance the load, as the load of a specific hash

bundle disappears when the respective flow enters its transmission pause.

The previous chapter has shown that we exceed the capabilities of the memory

interface and central interconnect structure when using both PowerPC processors

in association with the FlexPath offload features. If a packet size distribution

according to the IMIX definition [105] were applied, we would therefore obtain

measurement results which are dominated by the performance bottleneck effects of

the memory interface and the effectiveness of the traffic distribution among the

processing entities would be concealed. Therefore, I chose to reduce the packet

sizes to 78 bytes, 160 bytes and 256 bytes (from the original 64, 576 and 1518)

while maintaining the 7:4:1 packet shares of the original IMIX. The smallest size

packets have been increased from 64 to 78 bytes, so that the Spirent-specific

measurement strings fit after a full TCP / UDP packet header. While this modification

in the packet size distribution does not resemble the distribution found in the real

Internet, I can now guarantee to first run into the processor bottleneck rather than

the memory bottleneck.

For the generation of the QoS-marked traffic, I generate two logical connections, but

use a constant bit rate for each packet size, in contrast to the bursty pattern

presented for the best effort traffic before. This stimulation may be motivated by the

fact that in reality, non-best effort traffic is often subject to traffic shaping

algorithms, where the packets of each service class are injected with certain

predefined timing and bandwidth behavior (e.g. constant bit-rate (CBR)) in order to

comply with respective service-level agreements in the actual network.

For all following measurements, 10% of the traffic volume is marked with a non-zero

DSCP, and 90% of the traffic volume is generated as bursty best effort traffic with a

DSCP of 0x0. The total traffic volume is then increased from low levels until the

system resources are fully saturated and packet latency and loss rates are evaluated

in a differentiated fashion for each service class.

6.6.1. QoS-aware AutoRoute

The first set of measurements shows the results for a pure AutoRoute scenario,

where all packets take the hardware path, but DSCP-marked packets are directed

to the dedicated high-priority queues in the Traffic Manager. The corresponding

HDGA tree is shown in Figure 80. Although the HDGA tree contains handling rules

for differentiated packet spraying they will never actually be used as they refer only

to lookup misses in the next-hop lookup engine, and the lookup table covers the

entire address space.

Chapter 6 - FlexPath NP Demonstrator

 203

Disc DiscCP: Ctrl

00 0
1 10 11

Disc-Flag = 1

Ctrl-Flag = 1

Egr_Port=1
0 1

AutoRoute

Port0 HI

AutoRoute

Port1 HI

DSCP=0

LU-Flag=1

0
1

10

11

00

DP:

spray HI

DP:

spray LO

Egr_Port=1

0 1

AutoRoute

Port0 LO

AutoRoute

Port1 LO

Figure 80: HDGA Decision Graph for FlexPath NP AutoRoute Scenario with QoS

Differentiation

As there is no processor involved in AutoRoute forwarding, we can only expect to

run into the memory access bandwidth bottleneck previously seen in the RFC2544

throughput tests of our FPGA-based prototyping platform.

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700

Aggregate Average Input Load (Mbps)

P
a

c
k

e
t

L
a
te

n
c

y
 (

µ
s

)

0

5

10

15

20

25

30

P
a

c
k

e
t

L
o

s
s

 R
a

te
 (

%
)

Latency BE

Latency QoS

Pkt Loss BE

Pkt Loss QoS

Figure 81: Packet Latency and Loss Rates per Traffic Class for AutoRoute Scenario

When analyzing the measurement results, which are depicted in Figure 81, we see

an (almost) identical forwarding latency of 5.9 µs for both traffic classes at 27 Mbps

aggregate average input, which is increasing to 7.6 µs at the 440 Mbps

measurement. After this point, we are encountering first congestion effects in the

egress part of the NP, and the best effort packets suffer from additional output

Chapter 6 - FlexPath NP Demonstrator

204

queuing delay compared to the QoS-marked packet streams. First packet losses

can be observed at the 522 Mbps point, where 6% of the best effort packets are

lost. Although both packet latency and packet loss increase significantly, the QoS-

marked packets can still be forwarded in a lossless fashion and with a latency of

less than 23 µs due to the classification in the Path Dispatcher and subsequent

assignment to a strictly prioritized queue in the Traffic Manager.

6.6.2. QoS-aware Packet Spraying

In the following, I will reintroduce the processors for the IP forwarding task, and

compare the key performance figures for both packet spraying and HLU-based

dedicated, flow-specific load assignment. These two schemes have been identified

in the simulations laid out in chapter 5, to be the ideal candidates for processing

stateful and stateless networking applications respectively. Especially in traffic

conditions, where we observe short-term load variations (i.e. bursts), we can expect

higher packet loss and latencies for the dedicated assignment performed with HLU

compared to packet spraying. The modified HDGA graph for this setup is shown in

Figure 82.

Disc DiscCP: Ctrl
00 0

1 10 11

Disc-Flag = 1

Ctrl-Flag = 1

DSCP=0

10

DP:

spray HI

DP:

spray LO

Figure 82: HDGA Decision Graph for FlexPath NP Packet Spraying Scenario with QoS

Differentiation

Figure 83 shows the performance differentiated for the two traffic classes while the

system is in underload. The packet latency for both traffic types is equally increasing

from 11.1 µs to 11.8 µs for the 130 Mbps measurement point. From there on, the

best effort packets start experiencing longer delays, as occasionally packets have to

wait for higher priority packets to be serviced during bursts that briefly exceed the

processing performance of the two PowerPC processors. However, the queues

provisioned in the Packet Distributor are dimensioned sufficiently large in order to

balance out these bursts.

Chapter 6 - FlexPath NP Demonstrator

 205

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300

Aggregate Average Input Load (Mbps)

P
a

c
k

e
t

L
a
te

n
c

y
 (

µ
s

)

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

P
a

c
k

e
t

L
o

s
s

 R
a

te
 (

%
)

Latency BE

Latency QoS

Pkt Loss BE

Pkt Loss QoS

Figure 83: Packet Latency and Loss Rates per Traffic Class for Prioritized Spraying

Scenario (Lossless Part)

First packet losses can be observed at the 253 Mbps measurement point, where the

latency of the best effort packets rises significantly from 14 µs to 30 µs, and the

system drops 0.96% of the best effort packets. Figure 84 shows the system

behavior for measurements beyond this point.

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300 350 400 450 500

Aggregate Average Input Load (Mbps)

P
a

c
k

e
t

L
a
te

n
c

y
 (

µ
s

)

0

5

10

15

20

25

30

35

40

45

50

P
a

c
k

e
t

L
o

s
s

 R
a

te
 (

%
)

Latency BE

Latency QoS

Pkt Loss BE

Pkt Loss QoS

Figure 84: Packet Latency and Loss Rates per Traffic Class for Prioritized Spraying

Scenario (Full Range)

Chapter 6 - FlexPath NP Demonstrator

206

As the system is offered increasing traffic on the input interfaces, the PowerPC

processors are no longer able to cope with the load and packet descriptors of best

effort packets are dropped in the Packet Distributor. Throughout the entire

measurement range, the whole offered QoS-marked traffic can be forwarded in a

lossless fashion, as a strict priority scheme is applied in the Packet Distributor. The

latency of the QoS packets also remains below 15 µs, suggesting that there is (still)

no bottleneck in the egress side of the NP; we have previously observed first

congestion effects in the AutoRoute scenario beyond 520 Mbps.

6.6.3. Spraying and HLU (S&H)

Finally, I show measurements for a scenario, where the QoS-marked packets are

still sprayed among both processors with high priority, but the best effort traffic is

now assigned using the HLU load balancing algorithm. This setup effectively

represents the S&H load balancing technique. However, the HLU load balancing is

applied to the same stateless IP forwarding traffic as packet spraying, as our

demonstrator implementation does not support IPsec traffic. The corresponding

HDGA graph is depicted in Figure 85.

Disc DiscCP: Ctrl
00 0

1 10 11

Disc-Flag = 1

Ctrl-Flag = 1

DSCP=0

10

DP:

spray HI HLU Table Lookup

DCPU

*Table
Disc

0 1 Hash Value CPU

0x000 DP

0x001 CP

0x002 DP

0x003 DP

0x004 CP

:

:

0x7FF DP

Figure 85: HDGA Decision Graph for FlexPath NP S&H Scenario with QoS

Differentiation

Chapter 6 - FlexPath NP Demonstrator

 207

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300 350 400 450 500

Aggregate Average Input Load (Mbps)

P
a

c
k

e
t

L
a
te

n
c

y
 (

µ
s

)

0

5

10

15

20

25

30

35

40

45

50

P
a

c
k

e
t

L
o

s
s

 R
a

te
 (

%
)

Latency BE

Latency QoS

Pkt Loss BE

Pkt Loss QoS

Figure 86: Packet Latency and Loss Rates per Traffic Class for S&H Scenario

In contrast to the scenario with packet spraying, the best effort traffic suffers from a

latency penalty of roughly 3 µs also in purely underload situations. This can be

explained by the fact that during bursts of packets that belong to the same flow,

successive packets are now not served by both processors - leading to a minimal

latency - but the processor currently assigned the flow processes all incoming

packets in sequence. The other processor might even remain idle during these

times. Figure 57 in section 5.3.2 has already predicted this increased forwarding

latency of HLU in comparison to packet spraying. Of course, the dedicated mapping

of flows to processors is desired when considering stateful networking applications,

as a distribution of the packets of the same connection among multiple processors

causes significant synchronization overhead and data consistency problems. In turn,

the available processor resources may not be maximally utilized for all points in

time. In addition to the increased latency of best effort packets, a small amount of

packet loss can be observed even for the lowest offered load values. The loss is

slowly rising from 0.26% at 54 Mbps to 0.55% at 156 Mbps and is to be compared

with the range of minimum packet loss obtained from the HLU simulations in Figure

56.

Beyond the 182 Mbps measurement, the packet loss and latency for best effort

flows is increasing much steeper - the processing limit of the two PowerPC

processors for this type of traffic is reached. Each individual processor is pushed

into overload during the packet bursts, as the load during these peaks can not be

distributed over all processors in the system. In comparison, the spraying scenario

Chapter 6 - FlexPath NP Demonstrator

208

started losing packets at 254 Mbps, which is 39% more offered traffic, and shows

the "pooling gain" effect that can be exploited by packet spraying.

The packet latency for the QoS-marked packets, which are still forwarded by

spraying through a highly prioritized queue in the Packet Distributor, is slowly

increasing to 15 µs at 476 Mbps. This latency is even slightly smaller than that

observed for the QoS packets in the spraying scenario (Figure 84), as the larger

packet loss rates for the best effort traffic class relieve the memory and interconnect

resources in the egress part of the NP.

Chapter 6 - FlexPath NP Demonstrator

 209

6.7. Conclusions

In this chapter, I have presented a full-featured FlexPath NP prototype

demonstrator, which combines all FlexPath NP-specific hardware modules with two

PowerPC processors and the SmartMem DMA engine in a single FPGA design. As

such, the feasibility and implementability of the previously presented concepts could

be proven. Measurements performed with the FPGA demonstrator show the

performance of the FlexPath NP concept and allow comparisons with the previously

predicted behavior through system simulations.

At first, a reference measurement with the two PowerPC processors was made in

order to obtain the baseline performance of a conventional processor cluster

architecture in the same system environment as the implemented FlexPath NP. As

both the packet processing software and the hardware platform have improved

significantly compared to the initial prototype used for calibrating the system-level

simulations (cf. section 3.3.2), the current demonstrator achieves almost triple

throughput, but the general behavior is still consistent with that predicted by the

system simulations.

The hardware-offload possibilities present in a FlexPath NP environment have been

explored extensively and it could be shown that the combined offload provided by

Pre- and Post-Processing units is able to double the performance of the NP

compared to the reference scenario.

The AutoRoute measurements were all memory-constrained, i.e. the full

performance of the ingress and egress data processing pipelines could not be

exploited due to memory access bandwidth limitations through the PLB bus and the

attached shared dynamic memory. Still, for smallest size packets the throughput on

the AutoRoute path was measured to be 5.2 times that of a single PowerPC

processor. In addition, the reduced processing latency of AutoRoute in comparison

to processor-forwarded packets could be shown.

Finally, I have presented measurements that illustrate QoS-aware forwarding and

load balancing strategies in a FlexPath NP. While I could not stimulate the prototype

with the same backbone traces used in the load balancing simulations of chapter

5.3, the trends observed during the load balancing simulations were confirmed with

the available artificial traffic generated by our lab equipment.

The presented measurement results therefore underline the validity and

effectiveness of the FlexPath NP concept. In addition, we have identified severe

bottlenecks in the central interconnect and shared memory subsystem of the

prototype, that would obstruct further scaling of the system towards more

processor cores and a higher forwarding performance. However, this also yields

Chapter 6 - FlexPath NP Demonstrator

210

valuable feedback and motivates further research based on the FlexPath NP results

about how to overcome these challenges.

Chapter 7 - Conclusion

 211

7. Conclusion

7.1. Contributions of this Thesis

The current dissertation has presented three major contributions to the state-of-the-

art in the network processor field:

FlexPath NP Architecture: Based on observations of current network processor

architectures and networking applications, the FlexPath NP architecture has been

proposed. The FlexPath NP improves the performance of the network processor by

offloading simple, recurring tasks from programmable resources to dedicated

hardware units.

– Even when packets are still to be processed by processor cores, the implemented

hardware offload in the FPGA-based prototype showed that the plain IP

forwarding performance of the available PowerPC processors could be doubled

by making use of the Pre- and Post-Processor units in the FlexPath NP.

– In addition, a full hardware offload is proposed for simple applications (AutoRoute)

that could be used for significant shares of the overall traffic traversing a network

processor, depending on its location and function within the network. The

AutoRoute path provides a hardware pipeline architecture that operates at

aggregated line speed and it is able to forward packets with significantly reduced

latency compared to software-based forwarding.

– In order to utilize the different processing elements in the NP chip efficiently, a

packet classification is needed in the ingress data path pipeline of the FlexPath

NP architecture. Apart from the before-mentioned CPU processing and

AutoRoute paths, arbitrary combinations of dedicated hardware accelerators and

software-programmable cores are supported. By moving packet analysis and

classification into the ingress hardware data path, the most efficient traversal

sequence for each expected packet type can be preconfigured.

Path Dispatcher: The Path Dispatcher is the hardware unit in the ingress data path

pipeline that executes the packet classification function in the FlexPath NP

architecture under hard real-time constraints. In contrast to packet classification

problems regarded in the prior art, the problem faced in the FlexPath NP Path

Dispatcher requires a generalization to significantly more header fields.

– The heterogeneous decision graph algorithm (HDGA) has been introduced, which

may be used to execute the packet classification function in the Path Dispatcher.

HDGA is a new multi-field packet classification technique that combines the

advantages of several prior art classification techniques and blends them with

some new ideas in order to solve the given classification problem. In a pre-

Chapter 7 - Conclusion

212

processing step, the classification rule base is re-formulated with Boolean

variables and compacted by logic minimization. The resulting rules are

categorized into relatively static and heterogeneous contributions and more

frequently changing homogeneous contributions. The static and heterogeneous

parts are worked off in HDGA by an optimized decision graph. The homogeneous

parts are efficiently handled by table and hash table lookups, which are

seamlessly integrated into the decision graph traversal.

– Apart from the concept of HDGA, an area-efficient hardware architecture for

implementing the Path Dispatcher has been derived. The presented architecture

allows a high degree of flexibility to change protocol details and rule base

structure by dynamic updates to configuration memories. In addition, the

proposed solution is scalable to larger problem sizes than those discussed within

the scope of this work by introducing a pipelined architecture.

– The concept and proposed architecture of the Path Dispatcher allows the system

designer to include classification results from (off-chip) classification engines (e.g.

TCAM-based NSEs). The external classifiers may communicate with the Path

Dispatcher over the same interface as the table or hash table lookup accesses in

HDGA.

Load Balancing and QoS:

The concept of assigning arriving packets to different processing paths in the NP

system by the Path Dispatcher can also be extended to be used for load balancing.

As packets of different traffic classes may be recognized and handled in a

differentiated fashion, the Path Dispatcher capabilities may also be used to enable

QoS concepts on a chip-wide level.

– It has been shown that the available processor resources in a multi-core NP

system can be utilized very efficiently when packet spraying is used as a load

balancing strategy. Packet spraying has superior performance in comparison to

dedicated load assignment based on flow hashes. However, packet spraying is

only suitable for stateless networking applications.

– For stateful traffic shares, hashing-based flow-to-processor mappings as used in

state-of-the-art systems are required. After having analyzed the operational

characteristics and implementation effort of two current load balancing schemes,

HLU (hash lookup) is proposed as another adaptive, hashing-based load

balancing technique. HLU produces similar performance as the two reference

schemes from the prior art, but at a reduced implementation effort.

– For systems that process both stateful and stateless networking applications, a

combination of packet spraying and HLU is discussed. The combined scheme is

Chapter 7 - Conclusion

 213

referred to as S&H and can be easily deployed in a FlexPath NP system, as the

Path Dispatcher can distinguish stateful and stateless networking flows. Since the

majority of the traffic belongs to the stateless application class, the additional

performance benefits associated with packet spraying dominate the overall

system behavior in S&H.

– The Path Dispatcher may be used to prioritize traffic before it reaches the central

processor complex. Therefore, QoS features may be implemented more

effectively in a FlexPath NP in comparison to conventional NP approaches, where

the differentiation has to be performed by software resources. The classification

capabilities of the Path Dispatcher give us the opportunity to assign the traffic

streams to separated and differently prioritized queues without CPU intervention.

Therefore, high-priority traffic may bypass lower-priority packets in the ingress

data path before even reaching the central processing elements.

Chapter 7 - Conclusion

214

Chapter 7 - Conclusion

 215

7.2. Outlook to Further Work

The present dissertation has focused mainly on the hardware-offload elements in

the ingress data path pipeline of the FlexPath NP architecture. Together with the

efforts in the egress data path pipeline and the DMA engine, the conceptual benefits

of the FlexPath architecture on an FPGA-based demonstrator have been shown.

The performed measurements validate previous results obtained through system-

level simulation. Other important aspects of the NP system, like the programmable

processor cores, interconnect and memory hierarchy, were just recruited from off-

the-shelf IP libraries or constrained by the available (commercial) FPGA

development board.

During initial simulations, we predicted memory access bandwidth limitations in the

chosen architecture that would eventually limit the achievable throughput of the NP

prototype. Through further optimizations in the SmartMem project [108] and by

having better physical memory modules on the finally used Virtex-4 development

board, the throughput of the system could be raised by 50% from 1 Gbit/s in initial

simulations to 1.5 Gbit/s in the prototype implementation. However, for software-

based IP forwarding of large packets and the AutoRoute path, the memory interface

becomes still saturated before the actual processing elements. In addition, in our

demonstrator system with only two PowerPC processors, the shared system bus

has to support already nine master and eight slave modules. This architecture is not

scalable to a true multi- or even manycore system without running into serious

congestion problems.

Recent commercial NP architectures as presented in section 2.1.1.2 (e.g. Cisco [24]

or Cavium [26]) feature parallel CPU clusters with 32 cores and more. However, in

these systems conventional bus-based architectures have been replaced with

crossbar switches. At the same time, academic NP projects (e.g. the GigaNetIC [33])

have considered NoCs (networks-on-chip) and tile-based processing clusters as a

more scalable solution than bus-based multi-processor systems.

In the following, I will outline some observations and proposals for further system

improvements. They are addressing the identified bottlenecks concerning memory

access bandwidth and shared medium interconnect. The demonstrated benefits of

the FlexPath NP approach may only be exploited to the full extent, when the

identified bottlenecks have been resolved.

– For the system interconnect, NoCs and crossbar switches would certainly be

straightforward solutions. However, both alternatives struggle with significant area

consumption, as a system is scaled to a larger number of cores. For example, the

switch boxes presented in the GigaNetIC consume the same area as a processor

cluster with four processing elements. One NoC switch with a locally attached

Chapter 7 - Conclusion

216

processor cluster and one Ethernet MAC fill an entire FPGA in the prototyping

platform presented in [33].

– First conceptual approaches to resolving the memory access bandwidth

bottleneck have been discussed between the FlexPath NP and SmartMem

projects, without yet being fully elaborated. The current implementation is already

based on interface definitions, which would allow the SmartMem DMA to store the

packets (and probably also the packet contexts) in different locations on the chip,

depending on the outcome of the Path Dispatcher classification. This allows

moving the architecture from a centralized, shared memory system to a

distributed memory system. In turn, the performance requirements for every

individual memory component can be lowered.

– The network processor architecture would become more scalable by grouping the

programmable processing elements and certain dedicated hardware accelerators

in clusters of limited size. The overall processing performance is achieved by

replicating several smaller-scale clusters in the same fashion as proposed in the

GigaNetIC ([33]). In order to address the area consumption and scalability issues

of NoC-based systems, hierarchical NoCs [109] are one recently investigated

alternative. Cluster-local memories are used to minimize congestion during packet

processing and a hierarchically structured interconnect can provide an efficient

system-wide communication.

– For processor clusters, the packet data and context can be transferred to the

cluster-local SRAMs (referred to as Header Buffer concept in [108]), which can be

accessed by the processors through high-capacity crossbar connections. Such

SRAMs provide a high memory access bandwidth for irregular access patterns,

but they are limited in size. After processing, the packets may be transferred to an

external SDRAM, as queuing delays caused by Path Control and Traffic Manager

are significantly longer than those in front of the network processor complex and

larger memories are required. However, the FIFO behavior of the output queues

favor regular memory access patterns, which are well supported by the burst

modes in current dynamic memories. AutoRoute packets may of course be stored

in the external SDRAM directly as the Packet Descriptor bypasses the network

processor complex.

– The Path Dispatcher has to assign the incoming packet stream onto the available

processor clusters. An enhanced SmartMem DMA and packet distribution system

is required to forward the packets and contexts to the respective processing

elements. One open problem would be to find an efficient way of supporting

multi-hop processing paths in such a cluster-based, distributed memory NP.

Packets traversing several processing elements in different clusters would cause

Chapter 7 - Conclusion

 217

increased data copy operations between the different local memories and put

additional stress onto the system-wide interconnect.

– Another important issue would be how to manage globally shared control plane

information, like e.g. the routing table, IPsec databases or connection-specific

traffic shaping parameters.

– Load balancing strategies would also have to be revisited, as the cluster regarded

in the present thesis is assumed to have a uniform access to a globally shared

packet memory. Different communication costs within and in between adjacent

processor clusters would certainly influence the choice of suitable load balancing

strategies for the proposed NP architecture. Packet spraying has been identified

in the current thesis to be a very effective candidate for multi-processor load

balancing, as it can exploit a pooling gain effect by distributing the packets over a

multitude of parallel processors. However, if the performance constraints on

interconnect and memory structures require a migration to a tiled processor

cluster structure with local storage and hierarchical interconnects, packet

spraying among all processors in the system is no longer feasible. Packet

spraying would have to be constrained to be used only within each processor tile,

in which typically between four and eight processor cores share a common

memory. This would in turn decrease the potential pooling gain, which can be

exploited by the spraying technique.

A more detailed elaboration of the before mentioned approaches could not be

covered within the scope of the FlexPath NP project and the current dissertation.

However, I would consider these aspects as promising starting points for possible

future research activities based on the results of the FlexPath NP and SmartMem

projects.

Chapter 7 - Conclusion

218

Appendix

 219

Appendix

Appendix

220

Appendix

 221

Implementation Details of selected FlexPath NP-specific

Functional Modules

Pre-Processor

As described in chapter 3.2, the Pre-Processor analyzes the incoming packets and

extracts important header fields which will be used in further units of the NP. Figure

87 shows the architecture of the Pre-Processor with the main dataflow and the most

important external interfaces. The extraction happens in two overlapping functional

stages while the packet is streaming in from the receive side interfaces.

RX Port Scheduler

MAC Analyzer

FF

Bit Sel 1

Bit Sel 2

Bit Sel 3

Bit Sel 4

Control Unit

IPv4 FSM

IPv6 FSM

DynaCORE

FSM

TCP FSM

UDP FSM

ESP FSM

Header Field

Memory

 Length Analyzer Checksum Unit Discard Unit

P
a

c
k
e

t
D

a
ta

D
 a

c
k

R
d

 e
n

P
o

rt
 #

Pre-Processor busy

MAC ok

Length ok
Checksum ok

Discard Pkt

Addr

Hdr Field

P
a

c
k
e

t
D

a
ta

Context Assembler busy

SmartMem busy

Addr

Hdr Field

Pre-Processing Finished

(Ctx Valid / Discard)

Destination Address
Address Valid

RX MAC I/F

NH-Lookup

Engine

Context

Assembler

Pre-Processor

Figure 87: Abstracted Architecture of the Pre-Processor

The first stage consists of an FSM analyzing the MAC layer information of the

packet, i.e. frame integrity and L3 protocol field, while the later stage may complete

processing of the previous packet.

The second stage consists of a set of FSMs, one for each higher layer protocol, that

are activated when the lower protocol level machine detects the corresponding

higher layer protocol. In its current implementation, the Pre-Processor supports

IPv4, IPv63, TCP, UDP, ESP and a proprietary tunneling protocol which was defined

3 Partial implementation: IPv6 packets will be detected and identified with a special flag in

the packet context, but no full parsing and context extraction has been implemented yet.

Appendix

222

between the FlexPath group and the DynaCORE group at the university of Lübeck,

in order to support a coupling of the FlexPath NP and DynaCORE demonstrators to

demonstrate IPsec processing offload to a reconfigurable hardware [91].

The protocol-specific FSMs generate the control signals for four generic bit

selectors. These bit selectors consist of multiplexers and registers and store a

configurable slice in four bit granularity out of the current 32 bit input word. The

results of two adjacent bit selectors can also be combined in order to extract header

fields that span two adjacent input words. This is the case for example with the IPv4

source and destination addresses, which are each constructed out of the 16 LSBs

of the 7th (8th) word and the 16 MSBs of the 8th (9th) receive word, if the IP packet is

transmitted in a standard Ethernet-II frame. The extracted header fields are

subsequently stored in a local SRAM to be retrieved later by the Context Assembler

unit (see chapter 0). If the arriving packet has an IP header, the destination MAC

address is not only extracted and stored in the memory, but also forwarded on a

lookup engine interface, that is used to model the behavior of a full-fledged IP next-

hop lookup accelerator, e.g. implemented by a network search engine ([53], [54]). A

five bit packet ID (PID) is transmitted along with the address to later find

synchronization of the extracted header fields and the lookup result in the Context

Assembler. In the FPGA demonstrator implementation, the third byte of the IP

address is used as an index into a lookup table that allows supporting the simplified

routing scenario as described later in chapter 6.3. In addition to the extracted

header fields, the Pre-Processor also generates a set of pre-classifying flags that

indicate certain properties of the received packet towards downstream elements.

Examples for such flags are IPv4 protocol, TCP protocol, UDP protocol, Control

Plane protocol, Corrupt frame, etc. These status flags are stored in a single 32 bit

word in the header field memory.

While the FSMs in the Control Unit only control the extraction of relevant header

fields out of the different protocol headers, three separate units perform verification

of the packet length (matching the IP length field to the number of received bytes)

and the IP header checksum. The Discard unit may be notified by the MAC

Analyzer, Control Unit FSM, Length or Checksum unit in case of a detected error

and will subsequently signal a corrupt frame and halts the execution of further

packet analysis.

In addition to the pre-processing functions described above, the final

implementation of the Pre-Processor also includes a receive port scheduler, that

controls the handshaking between the receive side MAC buffers and the ingress

hardware processing pipeline. Internal backpressure signals from the Pre-Processor

itself, Context Assembler and the SmartMem buffer manager are evaluated and if all

attached modules are ready to receive further data, a new packet is read from the

receive buffers, iterating through all attached ports in a round-robin fashion.

Appendix

 223

Once processing of the current packet has finished, the Context Assembler is

notified of the completion and is given the PID, with which the corresponding

extracted header fields can be retrieved from the Header Field Memory.

Table 24 summarizes the stand-alone synthesis results of the Pre-Processor unit.

Table 24: Stand-alone FPGA Synthesis Results for the Pre-Processor

Resource Type Resource Quantity

FPGA Slices 696 of 25,280 (2.75%)

 Slice Flip-Flops 571 of 50,560 (1.13%)

 Slice LUTs 1,250 of 50,560 (2.47%)

FPGA BlockRAM memories 1 of 232 (0.43%)

Critical Path 5.774 ns (i.e. 173.178 MHz)

A more detailed description of the Pre-Processor and its implementation can be

found in Stefan Lugmair's Master thesis [93].

Context Assembler

The Pre-Processor generates initial packet context information as a protocol stack

specific set of extracted header fields. As the protocol stack of a received packet

changes, different fields will be extracted along with the uniformly defined flags.

Depending on the protocol of the arriving packet, a lookup of the destination IP

address may have been started by the Pre-Processor, and if so, the lookup might

produce a match or miss in the routing table. The Context Assembler is used to

consolidate all this information into a uniform format referred to as Raw Context in

the following. Figure 88 shows the contents of the Raw Context, which is generated

independently of the protocol stack of the arriving packet. Header fields or flags,

which are not present in the current packet, are filled by the Context Assembler with

zero values.

Word 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0 LU Disc ESP AH UDP TCP IPv6 IPv4 Corr Opt Ctrl Own

0x1 IP Five-tuple / Three-tuple Hash (CRC-16)

0x2 Ethertype

0x3 Egr. Port Ingr. Port

0x4 IP DiffServ Codepoint

0x5 IP Total Length

0x6 IP Next Protocol

0x7 IP Source Address

0x8 IP Destination Address

0x9 TCP/UDP Source Port TCP/UDP Destination Port

0xA Ack Rst Syn Fin

0xB ESP SPI

0xC Next-hop (Egress) MAC Address

0xD

Figure 88: Contents and Layout of Packet Raw Context

Appendix

224

L
U

w
a

it

D
is

c
a

rd

C
tx

 V
a

lid

L
U

 r
e

s
u

lt

Synchronization Unit

Context Assembler Unit

Path Dispatcher Invocation

Context Assembler

Pre-Processor

P
ip

e
lin

e
 B

u
s
y

IP
 A

d
d

r
V

a
lid

P
a

c
k
e

t
D

is
c
a

rd

C
o

n
te

x
t
R

e
a

d
y

N
H

L
U

 R
e

a
d

y

H
it
/M

is
s
,

M
A

C
 A

d
d

re
s
s

Path Dispatcher

Path

Dispatcher

Context

Gen. Eng.

Pre-

Processor

S
ta

rt
 P

a
D

P
a

D
 R

e
a

d
y

S
ta

rt

R
d

y

S
ta

rt

R
d

y

AddrAddr

Raw Ctx
Hdr Fields

NH-Lookup

Figure 89: Abstracted Architecture of the Context Assembler

The architecture of the Context Assembler unit is shown in Figure 89. The first task

is to synchronize the results generated by the Pre-Processor and next-hop lookup

engine. This is implemented by a set of first-word-fall-through FIFOs, which are

analyzed by the Synchronization Unit FSM. If a packet contains an IPv4 header, the

Pre-Processor initiates a lookup, which is indicated by the IP Address Valid signal in

addition to the PID, which is forwarded with every piece of context information or

packet descriptor throughout the ingress data path modules. The FIFOs store the

respective PIDs. When the packet has been completely received and analyzed, the

Pre-Processor sends another transaction consisting of PID and either a Discard or

Context Ready signal to the Context Assembler. In case of a corrupt packet

(Discard), no header fields and flags are stored for this packet in the Header Field

Memory of the Pre-Processor. For packets with a valid IP address, the next-hop

lookup engine delivers the lookup result (MAC address of downstream router and

output port) along with a hit/miss information.

The Synchronization Unit checks the PIDs of the head of the FIFOs, and when all

results for the current packet have arrived, the Context Assembler FSM is triggered.

If the packet is valid, the Context Assembler unit reads the extracted header fields

from the Pre-Processor and appends additional fields appropriately in order to

Appendix

 225

achieve the prescribed Raw Context shown in Figure 88. The Raw Context is saved

in local buffers in the Path Dispatcher and Context Generation Engine for later use.

Once the Raw Context has been generated, another FSM controls the handover of

the current PID to the Path Dispatcher in order to start the classification of the most

recent packet. The stand-alone synthesis results for the Context Assembler unit are

summarized in Table 25 below.

Table 25: Stand-alone FPGA Synthesis Results for the Context Assembler

Resource Type Resource Quantity

FPGA Slices 487 of 25,280 (1.93%)

 Slice Flip-Flops 250 of 50,560 (0.49%)

 Slice LUTs 766 of 50,560 (1.52%)

FPGA BlockRAM memories 0 of 232 (0%)

Critical Path 6.756 ns (i.e. 148.021 MHz)

Path Dispatcher

Detailed descriptions of the concept and implementation of the Path Dispatcher unit

have already been presented in chapter 4.4. The following section of the appendix

presents the configuration interface of the Path Dispatcher, which is accessed

through a slave attachment on the PLB bus.

As described in section 4.4.2.4, the HDGA tree structure as presented in Figure 48 is

stored in the Graph Node Memory (Figure 49). From the software driver perspective,

the 211 bit wide memory is mapped to a PowerPC cacheline, which is a 256 bit

structure. In a C-language level, the individual fields can be accessed through

components of the packed struct as shown in Code Listing 2. The most significant

45 bits will be treated as unused padding information.

Appendix

226

struct HDGA_node

{

 unsigned int padding0:45
4
;

 unsigned int quart:1; // flag indicating Quaternary Node

 unsigned int mask0:32; // binary or quaternary node 0x..0

 unsigned int value0:32;

 unsigned int oper0:3; // 0:=, 1:<, 2:>, 3:!=, 4:Hash

 unsigned int is00Ptr:1;

 unsigned int is01Ptr:1;

 unsigned int PtrAID00:10; // max. 10b Ptr / 6b AID

 unsigned int PtrAID01:10;

 unsigned int CtxA00_0:4; // next stage ALU0 word

 unsigned int CtxA00_1:4; // next stage ALU1 word

 unsigned int CtxA01_0:4; // next stage ALU0 word

 unsigned int CtxA01_1:4; // next stage ALU1 word

 unsigned int mask1:32; // binary node 0x..1

 unsigned int value1:32;

 unsigned int oper1:3; // 0:=, 1:<, 2:>, 3:!=, 4:Hash

 unsigned int is10Ptr:1;

 unsigned int is11Ptr:1;

 unsigned int PtrAID10:10; // max. 10b Ptr / 6b AID

 unsigned int PtrAID11:10;

 unsigned int CtxA10_0:4; // next stage ALU0 word

 unsigned int CtxA10_1:4; // next stage ALU1 word

 unsigned int CtxA11_0:4; // next stage ALU0 word

 unsigned int CtxA11_1:4; // next stage ALU1 word

} __attribute__((packed));

Code Listing 2: Packed C-struct of Graph Node Memory Contents

The hash table lookup operations that can be interleaved in HDGA with the decision

graph traversal have to be configured in two stages in accordance with the

functional description in chapter 4.4.2.5. Similar as for the HDGA graph node

contents, the information for the hash table memory can be packed into cacheline

transfers, while the hash table configuration memory can be accessed with single 32

bit words according to Code Listing 3.

4 On 32 bit processors, padding fields larger than 32 bits must be split into several fields, e.g.

here padding00:32; padding01:13;. The above code padding0:45; would not compile

and is used as a shorthand notation to clarify the total need of 45 padding bits.

Appendix

 227

struct HashTableConfiguration

{

 unsigned int padding0:7;

 unsigned int Hash:1; // Enables the CRC-16 calculation

 unsigned int TruncSize:4; // Truncation width (0: 16 bits!)

 unsigned int BaseAddress:16; // Hash Table Base Address

 unsigned int CollRes:1; // Enables Chained Coll. Resolution

 unsigned int reserved:3; // reserved for future extensions

} __attribute__((packed));

struct hashtable_cr

{

 unsigned int padding0:195;

 unsigned int Chain_Valid:1; // 0: end of list is reached

 unsigned int Hit:1; // entry contains valid information

 unsigned int isPtr:1;

 unsigned int PtrAID:10; // max. 10b Ptr/6b AID, as in tree

 unsigned int Key:16; // the original search key

 unsigned int ChainPtr:16;

 unsigned int CtxAddr_0:4; // next stage ALU0 word, if Ptr

 unsigned int CtxAddr_1:4; // next stage ALU1 word, if Ptr

 unsigned int reserved:8; // reserved for future extensions

} __attribute__((packed));

struct hashtable_ncr

{

 unsigned int padding0:196;

 unsigned int Hit0:1; // first logical entry, 0x..0

 unsigned int isPtr0:1;

 unsigned int PtrAID0:10;

 unsigned int CtxAddr0_0:4;

 unsigned int CtxAddr0_1:4;

 unsigned int reserved0:8;

 unsigned int padding1:4;

 unsigned int Hit1:1; // second logical entry, 0x..1

 unsigned int isPtr1:1;

 unsigned int PtrAID1:10;

 unsigned int CtxAddr1_0:4;

 unsigned int CtxAddr1_1:4;

 unsigned int reserved1:8;

} __attribute__((packed));

Code Listing 3: Packed C-structs of Hash Table Configuration Register and Hash Table

Memory Contents

Depending on whether the hash table features collision resolution, the

hashtable_cr or hashtable_ncr struct has to be used to build the hash table.

Code Listing 4 shows the layout of the individual components in the Translation

Memory, which is used after HDGA classification in order to retrieve the

classification result from the ActionID delivered by the HDGA leaf node.

Appendix

228

struct translation

{

 unsigned int padding:211;

 unsigned int TrafficClass:1; // 0: low latency, 1: high latency

 unsigned int Prio:1; // 0: low priority

 unsigned int Num_Dest:2; // 1:1, 2:2, 3:3, 0:4 destinations

 unsigned int PtrIM:9; // CGE Pointer/Instruction Memory

 unsigned int ListofDest:32; // NP Processing Path

} __attribute__((packed));

Code Listing 4: Packed C-struct of Translation Memory Contents

As the previous paragraphs have shown, the configuration data of the Path

Dispatcher unit comprise 32 bit values (or less) for the configuration registers and

hash table configuration memory and larger units for the remaining memory

contents. In order to support (incremental) updates of the Path Dispatcher data

structures, while the system is running, it is important that the individual contents

can be written in an atomic operation. Writing less than 32 bits can be achieved by a

single bus transfer, and the updated content of the corresponding memory is

available in the subsequent cycle, due to the dual-port BlockRAM implementation.

However, writing more than 32 bits from a processor cannot be achieved in a single

cycle that easily. The Bus Attachment FSM therefore contains a 256 bit register that

can hold a full processor cacheline, which will be transferred in a four doubleword

burst transfer across the PLB. When the control plane processor wants to write a

new configuration, this transfer register will be filled during the consecutive bus

cycles, and when the transfer is finished, the entire data can be written to the actual

BlockRAM memory in a single cycle. The inverse behavior is applied, when the

control plane processor wants to read back configuration information: as the

address is transferred over the PLB, the Bus Attachment reads the configuration

memory contents into its 256 bit transfer register and can then transmit the

requested information in subsequent cycles.

When defining the address map of the Path Dispatcher, care must be taken to

include address ranges for both cached and non-cached accesses in order to

perform the single-cycle writes (uncached) for the configuration registers and

memories with less than 32 bits and cacheline transfers for the other memories. As

the PowerPCs available in the Virtex-4 FPGAs have a cache map that allows

enabling / disabling the caching behavior at a granularity of 128 MB, the address

range for the Path Dispatcher has to be placed in the center of a 256 MB chunk of

addresses. Table 26 shows the currently implemented address map of the Path

Dispatcher demonstrator, with the configuration addresses mapped around the

0xA7… (uncached) and 0xA8… (cached) address blocks.

Appendix

 229

Table 26: Address Map of Path Dispatcher

PLB Base

Address

PLB High

Address

Impl.

Range

Contents Access

Mode

0xA7FF FF00 0xA7FF FF78 16 WD Hash Table Configuration Memory 32 bit

0xA7FF FF80 1 WD HDGA Root Node 32 bit

0xA7FF FF88 1 WD Root CtxAddr (ALU0) 32 bit

0xA7FF FF90 1 WD Root CtxAddr (ALU1) 32 bit

0xA800 0000 0xA800 07E0 64 CL Translation Memory 256 bit

0xA801 0000 0xA801 3FE0 512 CL Graph Node Memory 256 bit

0xA802 0000 0xA802 BFE0 1,536 CL Hash Table Memory 256 bit

In order to avoid byte steering effects that occur when 32 bit accesses are

performed over the 64 bit PLB bus, the addresses for the Hash Table Configuration

Memory and Registers are positioned on 64 bit multiples. With respect to mapping

PLB addresses to physical addresses for the Hash Table Configuration Memory, we

receive:

Table 27: Mapping PLB to Physical Addresses for Hash Table Configuration Memory

PLB Address Physical Address Contents

0xA7FF FF00 0x0 Configuration of first logical hash table

0xA7FF FF08 0x1 Configuration of second logical hash table

0xA7FF FF10 0x2 Configuration of third logical hash table

0xA7FF FF78 0xF Configuration of sixteenth logical hash table

The wider memories do not incur the byte steering problem, but for the graph node

memory and hash table memory, the additional mapping between logical addresses

(that are used in the address / pointer fields within the respective data structure) and

the physical address of the BlockRAM memories has to be considered. The different

address relations are shown in Table 28 and Table 29.

Table 28: Address Relations for Graph Node Memory

PLB Physical Logical Contents

0xA801 0000 0x000 0x000 Binary Nodes: 0x0 & 0x1; Quaternary Node: 0x0

0xA801 0020 0x001 0x002 Binary Nodes: 0x2 & 0x3; Quaternary Node: 0x2

0xA801 0040 0x002 0x004 Binary Nodes: 0x4 & 0x5; Quaternary Node: 0x4

0xA801 3FE0 0x1FF 0x3FE Binary Nodes: 0x3FE & 0x3FF; Quaternary: 0x3FE

Appendix

230

Table 29: Address Relations for Hash Table Memory

PLB Physical Logical (assumed base 0x0,

w/o Collision Resolution)

Logical (assumed base 0x0,

w/ Collision Resolution)

0xA802 0000 0x000 Offsets 0x000 & 0x001 Offset 0x000

0xA802 0020 0x001 Offsets 0x002 & 0x003 Offset 0x001

0xA802 0040 0x002 Offsets 0x004 & 0x005 Offset 0x002

0xA802 BFE0 0x5FF Offsets 0xBFE & 0xBFF Offset 0x5FF

SmartMem

In contrast to the description of the Buffer Manager DMA engine during the system

simulations (chapter 3.3.2.2), we have embedded a more advanced DMA engine into

our final FPGA demonstrator (chapter 6). This advanced version is referred to as

SmartMem Buffer Manager and is described in detail in Daniel Llorente's

dissertation [108]. The following paragraphs briefly summarize the main features of

the SmartMem architecture and the interfaces to the other FlexPath NP modules.

RX Unit

Path Dispatcher RX MAC I/F

Segmentation Unit

Storing Unit

RX Side PLB

LIS-IPIF Master

Pre-

Processor

S
m

a
rt

M
e

m
 R

e
a

d
y

B
u

s
y

P
k
tD

a
ta

D
 a

c
k

P
k
tD

a
ta

P
k
tD

a
ta

C
la

s
s
.
R

e
s
u

lt

PD

P
D

C
.R

.

Synchronization

Ctx Gen Engine

Address Manager

Memory Control Structures

Management

Segment Bitmap

Addr Req Addr Disc

PLB LIS-IPIF Slave

C
la

s
s
.
R

e
s
u

lt

P
a

c
k
e

t
D

e
s
c
.

TX Unit

Fetching Unit

TX Side PLB

LIS-IPIF Master

Output

Controller

Post-Processor

Traffic Manager

P
a

c
k
e

t
D

e
s
c
.

C
IO

/P
k
tD

a
ta

C
IO

/P
k
tD

a
ta

C
IO

/D
a

ta
 V

a
lid

T
X

-P
o

rt
#

re
a

d
y

B
u

s
 A

d
d

r

B
u

s
 A

d
d

r

P
D

s
ta

rt

P
o

rt
#

S
m

a
rt

M
e

m
 R

e
a

d
y

C
G

E
 R

e
a

d
y

C
G

E
 S

ta
rt

SmartMem Buffer Manager

Addr Cache

Figure 90: Abstracted Architecture of the SmartMem Buffer Manager (DMA)

When a packet is received from the link, the packet data is forwarded to the

SmartMem RX Unit in parallel to the Pre-Processor. The packet data is stored in a

BlockRAM buffer in the Segmentation Unit and is then partitioned to fit into a single

or a combination of two segments, from a pool of 256 B, 512 B, 1024 B, and 2048 B

segments. After segmentation, the packet data is forwarded to the Storing Unit,

which stores the packet data in the DDR-SDRAM over the PLB master attachment.

The Storing Unit requests the necessary address segments from the Address

Manager, which maintains a cache of empty segment pointers. After the complete

packet has been stored, the Packet Descriptor (see Figure 91) is generated, which

Appendix

 231

contains the addresses and segment sizes of the current packet along with other

information and is passed through the remaining modules of the FlexPath NP.

3263 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

First Segment Pointer Second Segment Pointer Flow Hash Value T
C

P
R

D
V

C
I
O

C
I
I

Egr.
Port

Ingr.
Port Packet Length

Seq. Number2
nd

 Seq.
Type

1
st
 Seq.

Typereserved (SmartMem)Data OffsetCtx. LengthCtx. Offset

SmartMem / Packet Data Reserved for Future Extensions

Packet Context (CII/CIO)

Path Control / Flow Sequence

Traffic Manager: Port Information

Currently Unused

Figure 91: Structure and Contents of the Packet Descriptor

While the segmentation and storage of the current packet take place, the Pre-

Processor, Context Assembler and Path Dispatcher also work on the packet data or

the generated packet context in parallel. The classification result is transmitted from

the Path Dispatcher to the SmartMem after classification. It was planned, that in a

later implementation the SmartMem uses these classification results in order to

optimize the DMA by storing the packets in different memories, depending on their

further processing path. E.g. AutoRoute packets might be kept in a different

memory than packets bound for the processor complex or even hardware

accelerators, which might be implemented with additional local memories. However,

such a feature has not yet been implemented, but the data flow of the classification

results through the SmartMem already support that feature.

When both the Packet Descriptor and the classification result of the current packet

are present, the whole information is passed on to the Context Generation Engine.

After the packet has been processed by the NP and the Traffic Manager determines

that a packet has to be transmitted, the corresponding packet descriptor is passed

to the TX Unit of the SmartMem. The Fetching Unit analyzes, if the packet has a

valid output context (CIO) for the Post-Processor, and subsequently fetches both

the output context and the packet data from the respective memory locations.

Afterwards, the (now unused) segment addresses are returned to the Address

Manager, so that they are freed (discarded) and are made available for future use.

When the data is sitting in the transmit buffer, transmission to the Post-Processor is

initiated by using a simple handshaking protocol.

The stand-alone synthesis results for the SmartMem buffer manager are

summarized in Table 30. The figures include the two LIS-IPIF master interfaces and

one LIS-IPIF slave as shown in Figure 90.

Appendix

232

Table 30: Stand-alone FPGA Synthesis Results for the SmartMem Buffer Manager

Resource Type Resource Quantity

FPGA Slices 3,354 of 25,280 (13.27%)

 Slice Flip-Flops 2,951 of 50,560 (5.84%)

 Slice LUTs 6,240 of 50,560 (12.34%)

FPGA BlockRAM memories 23 of 232 (9.91%)

Critical Path 8.713 ns (i.e. 114.771 MHz)

Context Generation Engine

The SmartMem was initially focused to optimize the storing efficiency of the packet

data in a more generalized NP scenario. In consequence, there were initially no

provisions made to perform the DMA operation for the packet context. As I have

already described in chapter 3.3.2.2, Andreas Schipf had implemented a Context

Generation Engine (CGE) [102] that either copied all extracted header fields and

flags from the Pre-Processor into memory as Context Information Input (CII), or was

able to write a pre-configured Context Information Output (CIO) with the instructions

for the Post-Processor. The initial implementation was developed together with the

previous version of the Buffer Manager that used linked lists of 64 byte segments to

store data in main memory, and the context information was mapped to a separate

linked list.

As we decided to merge the FlexPath NP demonstrator with the efforts made in the

SmartMem project, the interfaces for packet and context storage changed

significantly. Instead of maintaining several linked lists for CII, CIO and packet data,

we agreed on consolidating context and data into a shared memory space, by

appending a context section of 128 bytes in front of the packet data section in the

first segment. Still, the design of the SmartMem does not allow constructing CII or

CIO depending on the current type of packet and to perform the DMA of the

generated context information into the memory.

In order to adapt the CGE to the current status of the ingress data path pipeline, I

re-implemented the CGE to the following functional specification, which includes the

later defined interactions between the SmartMem Buffer Manager, Ingress Path

Control and Packet Distributor. Figure 92 shows the abstracted architecture of the

current version of the CGE.

Appendix

 233

Ingress Path Control

SmartMemContext Assembler

Context Generation

Controller

Data Memory
Raw Context

Memory

Context Storage

Packet Descriptor

Modification & Handover
PLB LIS-IPIF Master

Context

Memory

PLB LIS-IPIF Slave

Pointer /

Instruction

Memory

Context Generation Engine

C
la

s
s
.
R

e
s
u

lt

P
a

c
k
e

t
D

e
s
c
.

C
G

E
 R

e
a

d
y

C
G

E
 S

ta
rt

C
G

E
 R

e
a

d
y

R
a

w
 C

o
n

te
x
t

A
d

d
r

C
tx

 V
a

lid

P
a

c
k
e

t
D

e
s
c
.

IP
a

C
 R

e
a

d
y

IP
a

C
 S

ta
rt

R
d

y

S
ta

rt

C
.R

.

P
D

R
d

y

S
ta

rt

C
.R

.

P
D

Addr

Addr

Pointer /

Instruction

C
o

n
te

x
t

Figure 92: Abstracted Architecture of the Context Generation Engine

The main data flow through the new CGE is organized in three steps. In the first

step, the classification result passed on by the SmartMem buffer manager is used to

determine which kind of context information has to be generated.

Word 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0 LU Disc ESP AH UDP TCP IPv6 IPv4 Corr Opt Ctrl Own

0x1 IP DiffServ Codepoint

0x2 IP Next Protocol

0x3 IP Source Address

0x4 IP Destination Address

0x5 TCP/UDP Source Port TCP/UDP Destination Port

0x6 Next-hop (Egress) MAC Address

0x7

0x8 IP Five-tuple / Three-tuple Hash (CRC-16)

0x9 Ethertype

0xA IP Total Length

0xB Ack Rst Syn Fin

0xC ESP SPI

0xD Head of List of D

0xE List of Destinations

Figure 93: Standard Contents and Layout of Context Information Input (CII)

If the packet is destined for the processor complex, a CII has to be generated

basically by copying the Raw Context into the reserved segment in front of the

packet data. Figure 93 shows the standardized layout of the CII. The CII is basically

a permutation of the Raw Context (as shown in Figure 88). While the Raw Context

adheres to the layering of the protocols in the packets, and corresponds to the

sequence, in which the fields are typically extracted from the arriving packet, the CII

is optimized for the packet processing in the PE complex. The relevant fields for

packet forwarding are all concentrated in the first eight 32 bit words, which

corresponds to a single PowerPC cache line. Less frequently needed information

Appendix

234

follows in the remainder of the CII. At the end of the CII, a list of destinations with up

to four entries (at eight bits each) allows distribution of the packets by means of the

packet distributor, also in multi-hop scenarios.

However, if the packet is destined for AutoRoute, a CIO has to be generated that

contains the Assembler-like instructions necessary for the Post-Processor to

perform the required packet modifications. Here, the contents are obtained from the

Data Memory, which can be pre-configured with arbitrary instructions by the Control

Plane processor. Of course, the lookup result containing the next-hop router's MAC

address still has to be copied from the Raw Context Memory as an argument for the

first replace instruction. Figure 94 shows an example for an AutoRoute CIO in a plain

IPv4 forwarding scenario.

Word 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0 Replace @ 0x0 for 6B

0x1 Next-hop (Egress) MAC Address

0x2

0x3 Replace @ 0x6 for 6B

0x4 Source MAC Address of Egress Interface

0x5

0x6 Decrement @ 0x16 for 1B (TTL field)

0x7 IP Checksum Calculation @ 0x0E

Figure 94: Standard IPv4 AutoRoute Context Information Output (CIO)

It is also possible to skip context generation altogether by specifying a context

length of zero, in this case, only the later described modifications in the Packet

Descriptor are performed. This feature helps to measure the performance of the

system without the FlexPath-specific context information and this has been used for

the reference scenario measurements described in chapter 6.4.

In the second processing step, the context information is stored in the system

memory at the address extracted from the packet descriptor using the LIS-IPIF

master interface of the CGE.

Finally, the CGE completes the following fields in the packet descriptor (see Figure

91):

– The 11 least significant bits of the IP five-tuple hash value are added as Flow

Hash value for later use by the Ingress / Egress side Path Control

– Traffic Class and Priority bits are set in accordance with the classification result

obtained from the Path Dispatcher

– CII or CIO bits are set if a valid CII or CIO context have been stored in memory

– Ingress and Egress MAC interface information is added in accordance with the

information obtained from the next-hop lookup engine and the Pre-Processor

Appendix

 235

– Context Offset, which describes the offset (in bytes) from the beginning of the first

packet segment, is set to zero, as the CGE starts storing any context from the

beginning of the segment

– Context Length, which describes the length of valid context information is

updated in accordance with the generated context

Table 31 shows the synthesis results of the Context Generation Engine including

both LIS-IPIF interfaces (Master and Slave).

Table 31: Stand-alone Synthesis Results for the Context Generation Engine

Resource Type Resource Quantity

FPGA Slices 759 of 25,280 (3.00%)

 Slice Flip-Flops 961 of 50,560 (1.90%)

 Slice LUTs 1,201 of 50,560 (2.38%)

FPGA BlockRAM memories 5 of 232 (2.16%)

Critical Path 5.541 ns (i.e. 180.486 MHz)

Traffic Manager

As the packet descriptors leave the egress side Path Control in the correct

sequence, they have to be queued to resolve output port contention, which might

happen as the aggregated processing capabilities of the NP may exceed the

maximum transmission bandwidth of a single Gigabit Ethernet interface. In addition

to resolving contention, the implemented Traffic Manager also implements a strict

priority-based round robin transmission scheduling that allows a simple form of QoS

implementation. The abstracted architecture of the Traffic Manager is depicted in

Figure 95.

The arriving packet descriptors are enqueued into the correct queue evaluating the

egress port and priority bits of the packet descriptor (see Figure 91). Each queue

can hold a maximum of 128 packet descriptors, but the capacity can be reduced by

specifying a generic parameter in the VHDL code. If a packet descriptor would have

to be assigned to a full queue, the descriptor will instead be discarded through the

Traffic Manager's PLB LIS-IPIF master interface.

Appendix

236

P
0

 H
ig

h

Traffic Manager

Egress Path Control

T
M

 R
e

a
d

y

P
D

 v
a

lid

P
a

c
k
e

t
D

e
s
c
ri
p

to
r

Enqueue/Discard Unit
P

0
 L

o
w

P
1

 H
ig

h

PLB LIS-IPIF

Master

Transmit Scheduler

P
1

 L
o

w

P0 Leaky Bucket

P1 Leaky Bucket

S
m

a
rt

M
e

m
 R

e
a

d
y

P
D

 v
a

lid

P
a

c
k
e

t
D

e
s
c
ri
p

to
r

SmartMem

Figure 95: Abstracted Architecture of the Traffic Manager

The Transmit Scheduler determines which packet descriptor is to be sent next by

evaluating the backpressure signals from the SmartMem transmit side interfaces,

queue fill level and the leaky buckets that are used to limit the transmit rate on each

port to 1 Gbit/s. If a port still has transmission capacity, the high priority queues will

be worked off first, iterating between both ports (i.e. round-robin) if packets are

present for both ports. Low priority packets can be transmitted on the other port, if

there are no packets in the high priority queue and more high priority packets

cannot be transmitted due to an overflow in the leaky bucket for the respective port.

Table 32 summarizes the resource consumption and synthesis results of the Traffic

Manager.

Table 32: Stand-alone FPGA Synthesis Results for the Traffic Manager

Resource Type Resource Quantity

FPGA Slices 441 of 25,280 (1.74%)

 Slice Flip-Flops 533 of 50,560 (1.05%)

 Slice LUTs 689 of 50,560 (1.36%)

FPGA BlockRAM memories 4 of 232 (1.72%)

Critical Path 5.683 ns (i.e. 175.963 MHz)

Appendix

 237

References

[1] TeleGeography Research, "Global Internet Geography - Executive Summary",

2009, available online (Feb 3, 2010): http://www.telegeography.com/product-

info/gig/download/telegeography-global-internet.pdf

[2] F. Baker, Cisco Systems, "Requirements for IP version 4 Routers", IETF RFC

1812, June 1995, available online (Apr 14, 2009):

http://tools.ietf.org/html/rfc1812

[3] S. Blake et.al., "An Architecture for Differentiated Services", IETF RFC 2475,

December 1998, available online (Apr 14, 2009):

http://tools.ietf.org/html/rfc2475

[4] PacketClearingHouse, "Internet Exchange Directory", available online (Feb 3,

2010):

https://prefix.pch.net/applications/ixpdir/?show_active_only=0&sort=participa

nts&order=desc

[5] S. Hauger, T. Wild, A. Mutter, A. Kirstädter, K. Karras, R. Ohlendorf, F. Feller,

J. Scharf, "Packet Processing at 100 Gbps and Beyond - Challenges and

Perspectives", 10. ITG Fachtagung Photonische Netze, Dresden, Germany,

May 4-5, 2009

[6] AdvancedTCA Specifications, PCI Industrial Computers Manufacturing Group

(PICMG), available online (Apr 14, 2009):

http://www.picmg.org/v2internal/newinitiative.htm

[7] R. Ohlendorf, A. Herkersdorf, T. Wild, "FlexPath NP - A Network Processor

Concept with Application-Driven Flexible Processing Paths", Proceedings of

the CODES+ISSS 2005, pp. 279-284, Jersey City, NJ, USA, September 2005,

DOI: 10.1145/1084834.1084904

[8] SystemC Homepage, available online (Apr 14, 2009): http://www.systemc.org

[9] N. Shah, "Understanding Network Processors", Technical Report, UC

Berkeley, September 4, 2001, available online (Apr 15, 2009):

http://www.gigascale.org/pubs/338/UnderstandingNPs.pdf

[10] Agere Network Processors page, available online (Apr 15, 2009):

http://nps.agere.com/index.html, (hint: Agere was acquired by LSI on April 2,

2007 thus maintenance of this link is uncertain in the long run)

[11] Brecis Communications, "MSP5000 Multi-Service Processor Product Brief",

2002, available online (Apr 15, 2009): http://www.datasheetarchive.com/pdf-

http://www.telegeography.com/product-info/gig/download/telegeography-global-internet.pdf
http://www.telegeography.com/product-info/gig/download/telegeography-global-internet.pdf
http://tools.ietf.org/html/rfc1812
http://tools.ietf.org/html/rfc2475
https://prefix.pch.net/applications/ixpdir/?show_active_only=0&sort=participants&order=desc
https://prefix.pch.net/applications/ixpdir/?show_active_only=0&sort=participants&order=desc
http://www.picmg.org/v2internal/newinitiative.htm
http://www.systemc.org/
http://www.gigascale.org/pubs/338/UnderstandingNPs.pdf
http://nps.agere.com/index.html
http://www.datasheetarchive.com/pdf-datasheets/Datasheets-319/512401.pdf

Appendix

238

datasheets/Datasheets-319/512401.pdf (hint: original website

www.brecis.com is no longer reachable)

[12] J. R. Allen, Jr. et.al., "IBM PowerNP network processor: Hardware, software

and applications", IBM Journal of Research and Development, vol. 47, no.

2/3, pp. 177-193, March/May 2003

[13] "Parallel Express Forwarding on the Cisco 10000 Series", Cisco White Paper,

available online (Apr 15, 2009):

http://www.cisco.com/en/US/prod/collateral/routers/ps133/prod_white_paper

09186a008008902a.pdf

[14] Intel, "IXP1200 Network Processor", available online (Apr 15, 2009):

http://download.intel.com/design/network/datashts/27829810.pdf

[15] Xelerated, "Xelerator X40 Network Processor Product Brief", 2001, available

online (Apr 15, 2009):

http://www.icwic.cn/icwic/data/pdf/cd/cd075/Network%20Processor/a/1462

50.pdf

[16] F. Miller, "Entwicklung von Netzwerkprozessoren am Beispiel der Intel IXP

Produktfamilie", seminar paper and presentation (Hauptseminar) held at LIS,

TUM in winter term 2008/2009, in German

[17] Intel, "Intel IXP2855 Network Processor. Product Brief", available online (Apr

15, 2009): http://download.intel.com/design/network/ProdBrf/30943001.pdf

[18] SafeNet, "SafeNet Announces Inline IPsec Security Engine for System on

Chip Designs", Press Release, available online (Dec 18, 2009):

http://www.safenet-inc.com/About_SafeNet/News_and_Media/

News_and_Media_Items/2006/2006-01-25_-_SafeNet_Announces_

Inline_IPSec_Security_Engine_for_System_on___.aspx#

[19] SafeNet, "SafeXcel IP Flow-Through Packet Engine", Product Brief, available

online (Dec 18, 2009): http://www2.safenet-inc.com/

Library/EMB/SafeNet_Product_Brief_SafeXcel_IP_-_EIP-196.pdf

[20] AMCC, "nP7300 10 Gbps Network Processor with Integrated Traffic Manager

Product Brief", available online (Apr 16, 2009):

https://www.amcc.com/MyAMCC/retrieveDocument/SNP/nP7300_060822.p

df

[21] Netronome, "NFP-3200 Network Flow Processor. Product Brief.", available

online (Apr 16, 2009):

http://www.datasheetarchive.com/pdf-datasheets/Datasheets-319/512401.pdf
http://www.brecis.com/
http://www.cisco.com/en/US/prod/collateral/routers/ps133/prod_white_paper09186a008008902a.pdf
http://www.cisco.com/en/US/prod/collateral/routers/ps133/prod_white_paper09186a008008902a.pdf
http://download.intel.com/design/network/datashts/27829810.pdf
http://www.icwic.cn/icwic/data/pdf/cd/cd075/Network%20Processor/a/146250.pdf
http://www.icwic.cn/icwic/data/pdf/cd/cd075/Network%20Processor/a/146250.pdf
http://download.intel.com/design/network/ProdBrf/30943001.pdf
http://www.safenet-inc.com/About_SafeNet/News_and_Media/%0bNews_and_Media_Items/2006/2006-01-25_-_SafeNet_Announces_%0bInline_IPSec_Security_Engine_for_System_on___.aspx
http://www.safenet-inc.com/About_SafeNet/News_and_Media/%0bNews_and_Media_Items/2006/2006-01-25_-_SafeNet_Announces_%0bInline_IPSec_Security_Engine_for_System_on___.aspx
http://www.safenet-inc.com/About_SafeNet/News_and_Media/%0bNews_and_Media_Items/2006/2006-01-25_-_SafeNet_Announces_%0bInline_IPSec_Security_Engine_for_System_on___.aspx
http://www2.safenet-inc.com/%0bLibrary/EMB/SafeNet_Product_Brief_SafeXcel_IP_-_EIP-196.pdf
http://www2.safenet-inc.com/%0bLibrary/EMB/SafeNet_Product_Brief_SafeXcel_IP_-_EIP-196.pdf
https://www.amcc.com/MyAMCC/retrieveDocument/SNP/nP7300_060822.pdf
https://www.amcc.com/MyAMCC/retrieveDocument/SNP/nP7300_060822.pdf

Appendix

 239

http://www.netronome.com/files/file/Netronome%20NFP%20Product%20Bri

ef%20(3-09).pdf

[22] Xelerated, "Xelerator X11 Network Processors", available online (Apr 16,

2009): http://www.xelerated.com/uploads/files/5.PDF

[23] Linley Group, "Linley Carrier Ethernet Seminar", January 28, 2010, available

online (Jun 2, 2010):

http://www.linleygroup.com/Seminars/carrier_eth_program.html

[24] Cisco, "The Cisco QuantumFlow Processor: Cisco's Next Generation

Network Processor", Solution Overview, available online (Apr 16, 2009):

http://www.cisco.com/en/US/prod/collateral/routers/ps9343/solution_overvie

w_c22-448936.pdf

[25] "Cisco puts high-end silicon on the edge", EETimes article, March 3, 2008,

available online:

http://www.eetimes.com/showArticle.jhtml?articleID=206901479

[26] Cavium Networks, "OCTEON II Internet Application Processor (IAP) Family",

available online (Apr 16, 2009):

http://www.caviumnetworks.com/OCTEON_II_MIPS64.html

[27] J. Lockwood, "An Open Platform for Development of Network Processing

Modules in Reprogrammable Hardware", IEC DesignCon 2001, Santa Clara,

CA, USA, January 2001

[28] I.A. Troxel, A.D. George and S. Oral, "Design and Analysis of a Dynamically

Reconfigurable Network Processor", IEEE Conference on Local Computer

Networks (LCN'02), Tampa, FL, USA, November 6-8, 2002, pp. 483-492

[29] I. Papaefstathiou, et.al., "PRO3: A Hybrid NPU Architecture", IEEE Micro, vol.

24, issue 5, September/October 2004, pp. 20-33

[30] K. Ravindran, N. Satish, Y. Jin, K. Keutzer, "An FPGA-based Soft

Multiprocessor System for IPv4 Packet Forwarding", FPL 2005, Tampere,

Finland, August 24-26, 2005, pp. 487-492

[31] M. Platzner, J. Teich, N. Wehn (Eds.), "Dynamically Reconfigurable Systems:

Architectures, Design Methods and Applications", ISBN 978-90-481-3484-7,

Springer Science+Business Media B.V. 2010

[32] C. Kachris, S. Vassiliadis, "Analysis of a Reconfigurable Network Processor",

IPDPS 2006, Rhodos, Greece, April 25-29, 2006

http://www.netronome.com/files/file/Netronome%20NFP%20Product%20Brief%20(3-09).pdf
http://www.netronome.com/files/file/Netronome%20NFP%20Product%20Brief%20(3-09).pdf
http://www.xelerated.com/uploads/files/5.PDF
http://www.linleygroup.com/Seminars/carrier_eth_program.html
http://www.cisco.com/en/US/prod/collateral/routers/ps9343/solution_overview_c22-448936.pdf
http://www.cisco.com/en/US/prod/collateral/routers/ps9343/solution_overview_c22-448936.pdf
http://www.eetimes.com/showArticle.jhtml?articleID=206901479
http://www.caviumnetworks.com/OCTEON_II_MIPS64.html

Appendix

240

[33] J.-C. Niemann, C. Puttmann, M. Porrmann, U. Rückert, "Resource efficiency

of the GigaNetIC chip multiprocessor architecture", Journal of Systems

Architecture, vol 53, issues 5-6, pp. 285-299, May/June 2007

[34] M. Okuno, S. Nishimura, S. Ishida and H. Nishi, "Cache-based Network

Processor Architecture: Evaluation with Real Network Traffic", IEICE

Transactions on Electronics, vol. E89-C, no. 11, pp. 1620-1628, November

2006

[35] T. Li, X. Zhang, Z. Sun, "DynaNP - A Coarse-grain Dataflow Network

Processor Architecture with Dynamic Configurable Processing Path", SNPD

2007, vol. 3, pp. 182-187, Qingdao, China, July 30 - August 1, 2007

[36] V. Fuller, Cisco Systems, et.al., "Classless Inter-domain Routing (CIDR): The

Internet Address Assignment and Aggregation Plan", IETF RFC 4632, August

2006, available online (Apr 17, 2009): http://tools.ietf.org/html/rfc4632

[37] R. Braden, ISI, et.al., "Integrated Services in the Internet Architecture: An

Overview", IETF RFC 1633, June 1994, available online (Apr 17, 2009):

http://tools.ietf.org/html/rfc4632

[38] J. Babiarz, Nortel Networks, et.al, "Configuration Guidelines for DiffServ

Service Classes", IETF RFC 4594, August 2006, available online (Apr 20,

2009): http://tools.ietf.org/html/rfc4594

[39] S. Kent, BBN Technologies, et.al., "Security Architecture for the Internet

Protocol", IETF RFC 4301, December 2005, available online (Apr 20, 2009):

http://tools.ietf.org/html/rfc4301

[40] H. Schulzrinne, Columbia University, et.al., "RTP: A Transport Protocol for

Real-Time Applications", IETF RFC 3550, July 2003, available online (Apr 21,

2009): http://tools.ietf.org/html/rfc3550

[41] H. Schulzrinne, Columbia University, et.al., "RTP Profile for Audio and Video

Conferences with Minimal Control", IETF RFC 3551, July 2003, available

online (Apr 21, 2009): http://tools.ietf.org/html/rfc3551

[42] A. Kraas, "Verwendung von RTP/RTCP in Hinblick auf VoIP", seminar paper

and presentation (Hauptseminar) held at LIS, TUM in winter term 2004/2005,

in German

[43] J. Rosenberg, dynamicsoft, et.al., "SIP: Session Initiation Protocol", IETF RFC

3261, June 2002, available online (Apr 22, 2009):

http://tools.ietf.org/html/rfc3261

http://tools.ietf.org/html/rfc4632
http://tools.ietf.org/html/rfc4632
http://tools.ietf.org/html/rfc4594
http://tools.ietf.org/html/rfc4301
http://tools.ietf.org/html/rfc3550
http://tools.ietf.org/html/rfc3551
http://tools.ietf.org/html/rfc3261

Appendix

 241

[44] Z. Hichem, "Das SIP-Protokoll", seminar paper and presentation

(Hauptseminar) held at LIS, TUM in winter term 2004/2005, in German

[45] M. Meitinger, R. Ohlendorf, T. Wild and A. Herkersdorf, "Application

Scenarios for FlexPath NP", Technical Report TUM-LIS-TR-0501, Technische

Universität München, Lehrstuhl für Integrierte Systeme, December 2005

[46] Alan Millard, "2.5G/3G Wireless Networks and the Application of Network

Processors", Technical Report, IBM 2002

[47] K. Venken, I. Vinagre, J. de Vriendt, "Analysis of the Evolution to an IP-based

UMTS Terrestrial Radio Access Network", IEEE Wireless Communications,

October 2003

[48] L. Fang, N. Bitar, R. Zhang, M. Taylor, "The Evolution of Carrier Ethernet

Services - Requirements and Deployment Case Studies", IEEE

Communications Magazine, vol. 46, no. 3, March 2008, pp. 69-76

[49] D. Fedyk, D. Allan, "Ethernet Data Plane Evolution for Provider Networks",

IEEE Communications Magazine, vol. 46, no. 3, March 2008, pp. 84-89

[50] Donald E. Knuth, "The Art of Computer Programming, Second Edition,

Volume 3: Sorting and Searching", © 1998 Addison-Wesley, ISBN 0-201-

89685-0, 23rd printing, August 2007

[51] Z. Cao, Z. Wang, E. Zegura, "Performance of Hashing-Based Schemes for

Internet Load Balancing", IEEE INFOCOM 2000, vol. 1, Tel Aviv, Israel, March

2000, pp. 332-341

[52] Donald R. Morrison, "PATRICIA - Practical Algorithm To Retrieve Information

Coded in Alphanumeric", Journal of the ACM, vol. 15, no. 4, October 1968,

pp. 514-534

[53] IDT, "Taking Packet-Processing to the Next Level Achieving Next-Generation

Classification Performance Using Multiple Databases and IP Co-processors",

White Paper, available online (Jan 9, 2009):

http://www.idt.com/products/files/8636/75K6213452134_WP_77739.pdf

[54] IDT, "Network Search Engines", Product Flyer, available online (Oct 15, 2009):

http://www.idt.com/products/getDoc.cfm?docID=10154

[55] P. Gupta, N. McKeown, "Algorithms for Packet Classification", IEEE Network,

vol. 15, no. 2, pp. 24-32, March/April 2001

http://www.idt.com/products/files/8636/75K6213452134_WP_77739.pdf
http://www.idt.com/products/getDoc.cfm?docID=10154

Appendix

242

[56] R. Ohlendorf, M. Meitinger, T. Wild, A. Herkersdorf, "A Processing Path

Dispatcher in Network Processor MPSoCs", IEEE Transactions on VLSI

Systems, vol. 16, no. 10, pp. 1335-1345, October 2008

[57] P. Gupta, N. McKeown, "Packet Classification on Multiple Fields", ACM

Conference on Applications, Technologies, Architectures and Protocols for

Computer Communication, Cambridge, MA, USA, August/September 1999,

pp. 147-160

[58] S. Singh, F. Baboescu, G. Varghese, J. Wang, "Packet Classification using

Multi-Dimensional Cutting", ACM SIGCOMM 2003, Karlsruhe, Germany,

August 2003, pp. 213-224

[59] P. Gupta, N. McKeown, "Packet Classification using Hierarchical Intelligent

Cuttings", Hot Interconnects 7, Stanford, CA, USA, August 1999, pp. 34-41

[60] V. Srinivasan, G. Varghese, S. Suri, M. Waldvogel, "Fast and Scalable Layer

Four Switching", ACM SIGCOMM 1998, Vancouver, BC, Canada, September

1998, pp. 191-202

[61] F. Baboescu, S. Singh, G. Varghese, "Packet Classification for Core Routers:

Is there an alternative to CAMs?", IEEE INFOCOM 2003, San Francisco, CA,

USA, April 2003, pp. 53-63

[62] D. Pao, C. Liu, "Parallel tree search: An algorithmic approach for multi-field

packet classification", Computer Communications, vol. 30, no. 2, pp. 302-

314, January 2007

[63] T. Lakshman, D. Stiliadis, "High-Speed Policy-based Packet Forwarding

Using Efficient Multi-dimensional Range Matching", ACM SIGCOMM 1998,

Vancouver, BC, Canada, September 1998, pp. 203-214

[64] D. Taylor, J. Turner, "Scalable Packet Classification using Distributed

Crossproducting of Field Labels", IEEE INFOCOM 2005, Miami, FL, USA,

March 2005, pp. 269-280

[65] D. Taylor, "Models, Algorithms and Architectures for Scalable Packet

Classification", Dissertation, Washington University in St. Louis, St. Louis,

MO, USA, 2004

[66] A. Prakash, R. Kotla, T. Mandal, A. Aziz, "A High-Performance Architecture

and BDD-based Synthesis Methodology for Packet Classification", IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 22, no. 6, pp. 698-709, June 2003

Appendix

 243

[67] E. Cohen, C. Lund, "Packet Classification in Large ISPs: Design and

Evaluation of Decision Tree Classifiers", ACM SIGMETRICS 2005, Banff, AB,

Canada, June 2005, pp. 73-84

[68] T. Woo, "A Modular Approach to Packet Classification: Algorithms and

Results", IEEE INFOCOM 2000, vol. 3, Tel Aviv, Israel, March 2000, pp. 1213-

1222

[69] R. Lysecky, F. Vahid, "On-Chip Logic Minimization", DAC 2003, Anaheim, CA,

USA, June 2003, pp. 334-337

[70] R. Brayton, G. Hachtel, C. McMullen, A. Sangiovanni-Vincentelli, "Logic

Minimization Algorithms for VLSI Synthesis", Kluwer Academic Publishers,

Boston, MA, USA, 1984, ISBN 0-89838-164-9

[71] Instituto Politécnico do Porto, "Espresso for MS-DOS, version 2.3", Porto,

Portugal, available online (November 2, 2009):

http://www.dei.isep.ipp.pt/~acc/bfunc/

[72] R. Ohlendorf, M. Meitinger, T. Wild, A. Herkersdorf, "An Application-aware

Load Balancing Strategy for Network Processors", HiPEAC 2010, Pisa, Italy,

January 2010, LNCS 5952, pp. 156-170

[73] G. Dittmann, A. Herkersdorf, "Network Processor Load Balancing for High-

Speed Links", SPECTS 2002, San Diego, CA, USA, July 2002, pp. 727-735

[74] L. Kencl, "Load Sharing for Multiprocessor Network Nodes", Dissertation,

EFPL Lausanne, Switzerland, 2003

[75] W. Shi, M. MacGregor, P. Gburzynski, "Load Balancing for Parallel

Forwarding", IEEE Transactions on Networking, vol. 13, no. 4, pp. 790-801,

August 2005

[76] W. Shi, M. MacGregor, P. Gburzynski, "A Scalable Load Balancer for

Forwarding Internet Traffic: Exploiting Flow-level Burstiness", ANCS 2005,

Princeton, New Jersey, October 2005, pp. 145-152

[77] W. Shi, L. Kencl, "Sequence-Preserving Adaptive Load Balancers", ANCS

2006, San Jose, CA, USA, December 2006, pp. 143-152

[78] S. Govind, R. Govindarajan, J. Kuri, "Packet Reordering in Network

Processors", IPDPS 2007, Long Beach, CA, USA, March 2007

http://www.dei.isep.ipp.pt/~acc/bfunc/

Appendix

244

[79] N. Brownlee, K. C. Claffy, "Understanding Internet Traffic Streams:

Dragonflies and Tortoises", IEEE Communications Magazine, vol. 40, no. 10,

pp. 110-117, October 2002

[80] P. Dykstra, WareOnEarth Communications, Inc., Protocol Overhead Survey,

available online (Nov 5, 2009): http://sd.wareonearth.com/~phil/net/overhead/

[81] T. Wild, A. Herkersdorf, R. Ohlendorf, "Performance Evaluation for System-

on-Chip Architectures using Trace-based Transaction Level Simulation",

DATE 2006, Munich, Germany, March 2006

[82] R. Ohlendorf, T. Wild, M. Meitinger, H. Rauchfuss, A. Herkersdorf,

"Performance Evaluation of RISC-based SoC Platforms in Network

Processing Applications", IC-SAMOS 2006, Samos, Greece, July 2006, pp.

152-159

[83] R. Ohlendorf, T. Wild, M. Meitinger, H. Rauchfuss, A. Herkersdorf, "Simulated

and Measured Performance Evaluation of RISC-based SoC Platforms in

Network Processing Applications", Journal for Systems Architecture, vol. 53,

no. 10, pp. 703-718, October 2007

[84] R. Ohlendorf, M. Meitinger, T. Wild, A. Herkersdorf, "A Packet Classification

Technique for On-Chip Processing Path Selection", WASP 2007, Salzburg,

Austria, October 2007

[85] R. Ramaswamy, T. Wolf, "PacketBench: A Tool for Workload Characterization

of Network Processing", IEEE 6th Annual Workshop on Workload

Characterization (WWC-6), Austin, TX, USA, October 2003, pp. 42-50

[86] C. Jenkins, "NPU Co-Processors", Presentation at Network Processor

Conference, San Jose, CA, USA, August 2000

[87] J. Rabaey, "Silicon Architectures for Wireless Systems - Part 2 Configurable

Processors", Tutorial at Hot Chips 13, Stanford, CA, USA, August 2001,

available online: http://www.hotchips.org/archives/hc13/

[88] D. Llorente, K. Karras, T. Wild, A. Herkersdorf, "Advanced Packet

Segmentation and Buffering Algorithms in Network Processors", Transactions

on HiPEAC, vol. 4, no. 4, 2009, available online (Jul 2, 2010):

http://www.hipeac.net/node/3030

[89] D. Llorente, K. Karras, T. Wild, A. Herkersdorf, "Buffer Allocation for

Advanced Packet Segmentation in Network Processors", Application-specific

Systems, Architectures and Processors (ASAP 2008), Leuven, Belgium, July

2008, pp. 221-226

http://sd.wareonearth.com/~phil/net/overhead/
http://www.hotchips.org/archives/hc13/
http://www.hipeac.net/node/3030

Appendix

 245

[90] C. Albrecht, J. Foag, R. Koch, E. Maehle, "DynaCORE - A Dynamically

Reconfigurable Coprocessor Architecture for Network Processors", 14th

Euromicro International Conference on Parallel, Distributed and Network-

based Processing (PDP 2006), Montbéliard-Sochaux, France, February 2006,

pp. 101-108

[91] T. Pionteck, R. Koch, C. Albrecht, E. Maehle, M. Meitinger, R. Ohlendorf, T.

Wild, A. Herkersdorf, "SPP1148 Booth: Network Processors", FPL 2008,

Heidelberg, Germany, September 2008, p. 352

[92] Sprint Nextel, Academic Research Group, IP Data Analysis, Packet Size

Distribution, available online (Nov 16, 2009):

https://research.sprintlabs.com/packstat/packetoverview.php

[93] S. Lugmair, "Entwicklung eines Pre-Prozessors für die Network Processing

Prototyping Platform", Diploma Thesis, LIS, TUM, April 2005, in German

[94] D. Llorente, K. Karras, M. Meitinger, H. Rauchfuss, T. Wild, A. Herkersdorf,

"Accelerating Packet Buffering and Administration in Network Processors",

International Symposium on Integrated Circuits 2007, Singapore, Singapore,

September 2007, pp. 373-377

[95] A. Dunkels, A lightweight TCP/IP Stack, available online (Nov 17, 2009):

http://savannah.nongnu.org/projects/lwip/

[96] C. Shannon, E. Aben, K.C. Claffy, D. Andersen, N. Brownlee, "The CAIDA

OC48 Traces Dataset", available online (Dec 14, 2009):

http://www.caida.org/data/passive/passive_oc48_dataset.xml,

files used:

20020814-090000-1-anon.pcap

20020814-091500-1-anon.pcap

20020814-093000-1-anon.pcap

20020814-094500-1-anon.pcap

[97] C. Shannon, E. Aben, K.C. Claffy, D. Andersen, "The CAIDA Anonymized

2008 Internet Traces", available online (Dec 14, 2009):

http://www.caida.org/data/passive/passive_2008_dataset.xml,

files used:

eq-chic.dirA.20080717-130000.UTC.anon.pcap

eq-chic.dirA.20080717-130500.UTC.anon.pcap

eq-chic.dirA.20080717-131000.UTC.anon.pcap

eq-chic.dirA.20080717-131500.UTC.anon.pcap

https://research.sprintlabs.com/packstat/packetoverview.php
http://savannah.nongnu.org/projects/lwip/
http://www.caida.org/data/passive/passive_oc48_dataset.xml
http://www.caida.org/data/passive/passive_2008_dataset.xml

Appendix

246

[98] C. Shannon, E. Aben, K.C. Claffy, D. Andersen, "The CAIDA Anonymized

2008 Internet Traces", available online (Dec 14, 2009):

http://www.caida.org/data/passive/passive_2008_dataset.xml,

files used:

eq-chic.dirB.20080717-132000.UTC.anon.pcap

[99] Technische Universität München, Institute for Integrated Systems, "LIS-IPIF

Specification", available online (February 17, 2010):

http://www.lis.ei.tum.de/?lisipif

[100] Xilinx, "ML410 Embedded Development Platform", UG085, December 2008,

available online (March 8, 2010):

http://www.xilinx.com/support/documentation/boards_and_kits/ug085.pdf

[101] Xilinx, "Virtex-4 User Guide", UG070, December 2008, available online (March

8, 2010):

http://www.xilinx.com/support/documentation/user_guides/ug070.pdf

[102] A. Schipf, "Entwicklung einer Context Generation Engine für die Network

Processing Prototyping Platform", Diploma Thesis, LIS, TUM, July 2006, in

German

[103] Spirent, "Spirent TestCenter Series 1000 and Series 2000 Gigabit Ethernet

Test Modules", available online (April 22, 2010):

http://www.spirent.com/Broadband/Voice_IMS/~/media/Datasheets/Broadba

nd/PAB/SpirentTestCenter/STC_Series_1000-

2000_GbE_Test_Modules_datasheet.ashx

[104] S. Bradner, Harvard University, et.al., "Benchmarking Methodology for

Network Interconnect Devices", IETF RFC 2544, March 1999, available online

(Apr 22, 2010): http://tools.ietf.org/html/rfc2544

[105] Agilent Technologies, "Mixed Packet Size Throughput", available online

(March 31, 2010):

http://advanced.comms.agilent.com/n2x/docs/insight/2001-

08/TestingTips/1MxdPktSzThroughput.pdf

[106] M. Meitinger, R. Ohlendorf, T. Wild, A. Herkersdorf, "FlexPath NP - A Network

Processor Architecture with Flexible Processing Paths", SoC 2008, Tampere,

Finland, November 4-6, 2008

[107] M. Meitinger, "Paketverteilung und Resequenzierung im FlexPath

Netzwerkprozessor" (Arbeitstitel), Dissertation, TU München, Germany, 2010,

in German (in preparation)

http://www.caida.org/data/passive/passive_2008_dataset.xml
http://www.lis.ei.tum.de/?lisipif
http://www.xilinx.com/support/documentation/boards_and_kits/ug085.pdf
http://www.xilinx.com/support/documentation/user_guides/ug070.pdf
http://www.spirent.com/Broadband/Voice_IMS/~/media/Datasheets/Broadband/PAB/SpirentTestCenter/STC_Series_1000-2000_GbE_Test_Modules_datasheet.ashx
http://www.spirent.com/Broadband/Voice_IMS/~/media/Datasheets/Broadband/PAB/SpirentTestCenter/STC_Series_1000-2000_GbE_Test_Modules_datasheet.ashx
http://www.spirent.com/Broadband/Voice_IMS/~/media/Datasheets/Broadband/PAB/SpirentTestCenter/STC_Series_1000-2000_GbE_Test_Modules_datasheet.ashx
http://tools.ietf.org/html/rfc2544
http://advanced.comms.agilent.com/n2x/docs/insight/2001-08/TestingTips/1MxdPktSzThroughput.pdf
http://advanced.comms.agilent.com/n2x/docs/insight/2001-08/TestingTips/1MxdPktSzThroughput.pdf

Appendix

 247

[108] D. Llorente, "SmartMem - An Advanced Memory Subsystem for Networking

Applications", Dissertation, TU München, Germany, 2010, (in preparation)

[109] A. Lankes, T. Wild, A. Herkersdorf, "Hierarchical NoCs for Optimized Access

to Shared Memory and IO Resources", DSD 2009, Patras, Greece, August

27-29, 2009, pp. 255-262

General remark about the references used in this work: Most of the documents used

during the research for this dissertation were obtained from Internet sources.

Therefore, along with the reference description, I have included links to the original

online documents. Unless specifically indicated, these links are active at the time of

writing this dissertation and the last access date is specified next to the URL. While

it can be assumed, that academic research papers published by recognized

institutions like IEEE, ACM etc. remain accessible for longer periods of time, this

may not be true for material supplied from commercial companies.

Appendix

248

Appendix

 249

List of Figures

Figure 1: Hierarchical Structure of the Internet .. 16

Figure 2: Typical Router Implementation with ATCA Standard 18

Figure 3: SafeXcel-IP-196 IP Flow-Through Packet Engine 27

Figure 4: Fundamental NP Architectures: run-to-completion parallel processor

cluster (a), simple processor pipeline (b), and parallel processor pipelines (c) . 33

Figure 5: Confidential Data Transmission with IPsec Tunnel 39

Figure 6: Simplified Connection Setup and Protocol Stack for VoIP 41

Figure 7: Exemplary Network Topology of a UMTS Packet Domain Network.......... 43

Figure 8: Data Plane Protocol Stacks of UMTS/GPRS with ATM and All-IP Backbone

 .. 44

Figure 9: Binary Search Trees for Example Database.. 51

Figure 10: Binary Trie for Example Database... 52

Figure 11: PATRICIA Trie of Example Database .. 53

Figure 12: Working Principle of RFC ... 59

Figure 13: Graphical Representation of B from Table 4a ... 60

Figure 14: HiCuts Tree; at most 2 Rules for Linear Search and 8 Cuts per Tree Node

 .. 60

Figure 15: HyperCuts Tree; at most 2 Rules for Linear Search and 8 Cuts per Tree

Node .. 61

Figure 16: DCFL Classification with Three-dimensional Rule Base from Table 4b... 65

Figure 17: Reduced Ordered BDD (ROBDD, top) and Free BDD (bottom) for Boolean

Function CEECBAEFEBEADf  .. 67

Figure 18: Classification of Hashing-based Load Balancing Schemes 73

Figure 19: Hash-based Load Balancing with Overload Spraying 74

Figure 20: Adaptive Burst Shifting (ABS) ... 76

Figure 21: Hashing Adapted by Burst Shifting (HABS) .. 77

Figure 22: Functional Unit Traversal in a Generic Network Processor 79

Figure 23: Functional Unit Traversal in a FlexPath NP ... 84

Figure 24: NP Processing Performance Comparison Conventional vs. FlexPath NP

 .. 90

Figure 25: 40 Byte TCP Packet Shares from Internet Links recorded in 2004/2005 91

Figure 26: TAPES Model of FlexPath NP ... 94

Figure 27: Calibration Prototype Implementation on a Virtex-II Pro FPGA 95

Figure 28: SW Forwarding Performance of Reference Scenario 98

Figure 29: SW Forwarding Performance of FlexPath NP using HW Offload 100

Figure 30: Forwarding Performance of FlexPath NP with AutoRoute 101

Figure 31: Latency Comparison CPU Path vs. AutoRoute Path 102

Figure 32: Processing Latencies of AutoRoute and CPU-processed Packets over

Increasing Packet Size... 103

Appendix

250

Figure 33: FlexPath NP with Data and Control Plane CPUs, Hardware Accelerator

and AutoRoute ... 109

Figure 34: Decision Tree Size for Different - and -Weights (=5) 122

Figure 35: Maximum and Average Decision Tree Depth for Different - and -

Weights (=5) .. 122

Figure 36: Binary Decision Tree for Example Rule Base .. 124

Figure 37: Possible Decision Tree Optimizations: DAG Construction (left) and

Quaternary Decision Nodes (right) .. 125

Figure 38: HDGA Decision Graph with Binary and Quaternary Nodes 127

Figure 39: HDGA Average and Worst-Case Search Time Performance 129

Figure 40: HDGA Average Memory Requirements ... 130

Figure 41: Memory Requirement Reduction by Merging Isomorphic Sub-Trees 130

Figure 42: Latency Reduction by Using Quaternary Decision Nodes 131

Figure 43: HDGA Decision Graph Size Scaling .. 131

Figure 44: Top-Level Block Diagram of Path Dispatcher 133

Figure 45: Straightforward HDGA Node Contents ... 136

Figure 46: Path Dispatcher - Architecture A ... 138

Figure 47: Path Dispatcher - Architecture B ... 140

Figure 48: Optimized HDGA Node Contents .. 142

Figure 49: Path Dispatcher - Architecture C .. 142

Figure 50: Block Diagram of Table Lookup Unit ... 144

Figure 51: Throughput Performance of HDGA vs. Several Prior Art Schemes 147

Figure 52: Storage Requirements of HDGA vs. Several Prior Art Schemes 148

Figure 53: HLU Load Adaptation Scheme .. 155

Figure 54: Functional Simulation Model of FlexPath NP and Reference Architecture

for Load Balancing ... 159

Figure 55: Minimum and Maximum CPU Loads Observed with Different Load

Balancing Strategies .. 163

Figure 56: System Packet Loss Rates for Different Load Balancing Strategies 164

Figure 57: Average Packet Latency for Different Load Balancing Strategies 165

Figure 58: Packet Loss Rate and Average Latency for Different Packet Distributor

Buffer Sizes (6 PEs) .. 166

Figure 59: HDGA Decision Graph for FlexPath NP Load Balancing Simulation 167

Figure 60: Packet Loss Rates of S&H (FlexPath) and HABS (Reference) 168

Figure 61: Packet Latencies for S&H (FlexPath) and HABS (Reference) 169

Figure 62: Individual PE Load Share over Time (S&H) .. 170

Figure 63: Packet Reordering Rates .. 171

Figure 64: Photo of ML410 Development Board with Two Customized Extension

Boards ... 178

Figure 65: Building Blocks and Data Flow through FlexPath NP Demonstrator 179

Figure 66: Test and Measurement Setup ... 185

Figure 67: Processor-centric NP Throughput ... 187

Appendix

 251

Figure 68: Processor-centric NP Forwarding Rate .. 188

Figure 69: HDGA Graph for Static FlexPath FPGA Measurements 189

Figure 70: FlexPath NP Throughput using CII (Pre-Processor) 190

Figure 71: FlexPath NP Forwarding Rate using CII (Pre-Processor) 191

Figure 72: FlexPath NP Throughput using CII and CIO (Pre- and Post-Processor) 192

Figure 73: FlexPath NP Forwarding Rate using CII and CIO (Pre- and Post-

Processor) ... 193

Figure 74: AutoRoute Throughput ... 195

Figure 75: AutoRoute Forwarding Performance .. 195

Figure 76: Reference and FlexPath System Latencies for IMIX Traffic (Part I) 197

Figure 77: Reference and FlexPath System Latencies for IMIX Traffic (Part II) 198

Figure 78: Packet Transfer Function for FlexPath with 25% AutoRoute 199

Figure 79: Packet Transfer Function for FlexPath with 50% AutoRoute 200

Figure 80: HDGA Decision Graph for FlexPath NP AutoRoute Scenario with QoS

Differentiation .. 203

Figure 81: Packet Latency and Loss Rates per Traffic Class for AutoRoute Scenario

 .. 203

Figure 82: HDGA Decision Graph for FlexPath NP Packet Spraying Scenario with

QoS Differentiation .. 204

Figure 83: Packet Latency and Loss Rates per Traffic Class for Prioritized Spraying

Scenario (Lossless Part) .. 205

Figure 84: Packet Latency and Loss Rates per Traffic Class for Prioritized Spraying

Scenario (Full Range) ... 205

Figure 85: HDGA Decision Graph for FlexPath NP S&H Scenario with QoS

Differentiation .. 206

Figure 86: Packet Latency and Loss Rates per Traffic Class for S&H Scenario..... 207

Figure 87: Abstracted Architecture of the Pre-Processor 221

Figure 88: Contents and Layout of Packet Raw Context 223

Figure 89: Abstracted Architecture of the Context Assembler 224

Figure 90: Abstracted Architecture of the SmartMem Buffer Manager (DMA) 230

Figure 91: Structure and Contents of the Packet Descriptor 231

Figure 92: Abstracted Architecture of the Context Generation Engine 233

Figure 93: Standard Contents and Layout of Context Information Input (CII) 233

Figure 94: Standard IPv4 AutoRoute Context Information Output (CIO) 234

Figure 95: Abstracted Architecture of the Traffic Manager 236

Appendix

252

List of Tables

Table 1: UMTS Backbone Aggregation Factors ... 43

Table 2: Linear Search Table for Example Database .. 50

Table 3: Hash Table for Example Database ... 54

Table 4: Example Rule Bases B with d=2 and N=7 (a, left) and d=3 and N=7 (b, right)

 ... 58

Table 5: Bitmap Intersection - Intervals and Bitmaps ... 63

Table 6: Processing Constraints for 4x STM-16 Packet-over-Sonet/SDH or 10 Gbit/s

Ethernet Links .. 81

Table 7: Network Processing Complex Performance Comparison 89

Table 8: Profiling Results of modified LwIP Stack on Calibration Demonstrator 97

Table 9: CPU Execution Time and Bus Access Patterns ... 97

Table 10: Example Path Dispatcher Rule Base .. 111

Table 11: Characteristic Properties of Traditional Single-Field and Multi-Field

Classification vs. Path Dispatcher Requirements ... 111

Table 12: Derivation of Boolean Variables from Expressions in Table 10 115

Table 13: Area Estimates for Path Dispatcher Architecture A 139

Table 14: Area Estimates for Path Dispatcher Architecture B 141

Table 15: Area Estimates for Path Dispatcher Architecture C 143

Table 16: Estimated Resource Requirements of Various Architecture Alternatives 143

Table 17: Stand-alone FPGA Synthesis Results for the Path Dispatcher 145

Table 18: HLU Adaptation Parameters ... 157

Table 19: Key Characteristics of Utilized Internet Traces 161

Table 20: NP Performance Characteristics for S&H (FlexPath NP) and HABS

(Reference Architecture) ... 171

Table 21: FPGA Synthesis Results of Combined FlexPath / SmartMem Demonstrator

System ... 182

Table 22: FlexPath NP Next-Hop Lookup Engine Routing Table 186

Table 23: Characteristics of Best Effort Traffic Flows .. 201

Table 24: Stand-alone FPGA Synthesis Results for the Pre-Processor 223

Table 25: Stand-alone FPGA Synthesis Results for the Context Assembler 225

Table 26: Address Map of Path Dispatcher.. 229

Table 27: Mapping PLB to Physical Addresses for Hash Table Configuration

Memory .. 229

Table 28: Address Relations for Graph Node Memory ... 229

Table 29: Address Relations for Hash Table Memory .. 230

Table 30: Stand-alone FPGA Synthesis Results for the SmartMem Buffer Manager

 ... 232

Table 31: Stand-alone Synthesis Results for the Context Generation Engine 235

Table 32: Stand-alone FPGA Synthesis Results for the Traffic Manager 236

Appendix

 253

Code Listings

Code Listing 1: HLU Adaptation Routine ... 156

Code Listing 2: Packed C-struct of Graph Node Memory Contents 226

Code Listing 3: Packed C-structs of Hash Table Configuration Register and Hash

Table Memory Contents .. 227

Code Listing 4: Packed C-struct of Translation Memory Contents 228

Appendix

254

Appendix

 255

Abbreviations

3DES Triple Data Encryption Standard

ABS Adaptive Burst Shifting, load balancing technique proposed by Shi

et.al. in [75]

ACL Access Control List

ADPCM Adaptive Differential Pulse Code Modulation

AES Advanced Encryption Standard

AH Authentication Header (defined in  IETF RFC 4302)

AHH Adaptive HRW (highest random weight) Hashing, load balancing

technique proposed by Kencl in [74]

ALU Arithmetic Logic Unit

ANSI American National Standards Institute

ARP Address Resolution Protocol (defined in  IETF RFC 826)

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction set Processor

ATCA Advanced Telecommunication Compute Architecture, Industrial

standard for telecommunication equipment

ATM Asynchronous Transfer Mode, packet switching protocol operating on

L2 of the  OSI stack

BDD Binary Decision Diagram

BE best effort, default  QoS service class, i.e. no special prioritization

B-RAS Broadband Remote Access Server

BV Boolean Variable

CAM Content Addressable Memory

CAS Column Address Select

CBR Constant Bit Rate

CF Column Fitness

CIDR Classless Inter-Domain Routing

CII Context Information Input, data structure inside a FlexPath NP

CIO Context Information Output, data structure inside a FlexPath NP

CMOS Complementary Metal Oxide Semiconductor

CPI Cycles Per Instruction, performance metric of microprocessors

Appendix

256

CPU Central Processor Unit, within this thesis widely used as acronym for

software-programmable microprocessors in general, not only

"conventional" CPUs as e.g. an Intel Pentium, etc.

CRC Cyclic Redundancy Check, error correcting code used in a variety of

transmission protocols, e.g. Ethernet, ATM

DAG directed acyclic graph

DCFL Distributed Crossproducting of Field Labels, packet classification

technique proposed by Taylor et.al. in [64], [65]

DDR Double Data Rate

DiffServ Differentiated Services,  QoS architecture

DMA Direct Memory Access

DSCP DiffServ Codepoint

DSL Digital Subscriber Line

DSP Digital Signal Processor

EDK Xilinx FPGA development tool for processor-based designs

ESP Encapsulating Security Payload (defined in  IETF RFC 4303)

ETSI European Telecommunications Standards Institute

FIFO First-in First-out

FPGA Field Programmable Gate Array

FSM Finite State Machine

GPRS General Packet Radio Service, packet-oriented data transmission

standard in  GSM and  UMTS networks

GSM Global System for Mobile communications, formerly groupe spéciale

mobile, 2nd generation mobile cellular network standard by  ETSI

HABS Hash Adapted by Burst Shifting, packet classification technique

proposed by Kencl et.al. in [77]

HDGA Heterogeneous Decision Graph Algorithm, packet classification

technique proposed for use in Path Dispatcher

HLU Hash LookUp, load balancing technique proposed in this dissertation

HRW Highest Random Weight

HMAC-SHA1 Hash Message Authentication Code/Secure Hash Algorithm 1

ICMP Internet Control Message Protocol (defined in  IETF RFC 792)

Appendix

 257

IEEE Institute for Electrical and Electronics Engineers, International

professional and standardization organization

IETF Internet Engineering Task Force, standardization body for the IP

protocol suite

IMIX Internet Mix, Industry standard packet size distribution used for

networking equipment testing

IntServ Integrated Services,  QoS architecture

I/O Input/Output

IP Internet Protocol (defined in  IETF RFC 791), alternative meaning:

intellectual property

IPsec IP Security, group of protocols and architecture defined to provide

secure communication across IP networks, namely  ESP and  AH

ISA Instruction Set Architecture

ISE Xilinx FPGA Development Tool

ISDN Integrated Services Digital Network

ISP Internet Service Provider

ITU-T International Telecommunications Union, Telecommunication

Standardization Section, standardization body of the United Nations

kpps kilo packets per second

LAN Local Area Network

LCD Liquid Crystal Display

LED Light Emitting Diode

LSB Least Significant Bit

LUT Lookup table, basic element in an  FPGA

MAC Medium Access Control, usually refers to the Layer 2 protocol of the

 OSI stack

Mbps Megabit per second

MIPS Million Instructions Per Second, performance metric of

microprocessors

MSB Most Significant Bit

MPLS Multi-Protocol Label Switching, packet switching protocol on L2/L2.5

of the  OSI stack that is used for high-speed switching networks

with good  QoS control

MPSoC Multi-Processor  System-on-Chip

Appendix

258

MUX Multiplexer

NP Network Processor

NPU Network Processor Unit

NSE Network Search Engine

OSI Open Systems Interconnection, seven layer reference model used to

classify networking protocols. The layers are: physical (1), data link (2),

network (3), transport (4), session (5), presentation (6) and application

(7).

PCB Printed Circuit Board

PE Processing Element, generic term referring to either programmable 

CPU resources or application-specific hardware accelerators

PID Packet ID

PLB Processor Local Bus, IBM processor bus specification relevant for

PowerPC systems

PSTN Public Switched Telephone Network

QoS Quality-of-Service

RAM Random Access Memory

RAS Row Address Select

RFC Request for Comment (refers to  IETF standards documents)

also: Recursive Flow Classification, packet classification technique

proposed by Gupta et.al. in [57]

RGMII Reduced Gigabit Media Independent Interface

RISC Reduced Instruction Set Computer

ROBDD Reduced, Ordered  BDD, often simply referred to as BDD

RSVP Resource Reservation Protocol

RTCP Real-Time Control Protocol

RTP Real-Time Protocol

RX Receive

S&H Spraying and  HLU, load balancing technique proposed in this

dissertation

SAD Security Association Database

SDH Synchronous Digital Hierarchy, standardized optical transmission

scheme by  ITU-T, used worldwide (except North America, see 

Sonet)

Appendix

 259

SDRAM Synchronous Dynamic  RAM

SGMII Serial Gigabit Media Independent Interface

SIP Session Initiation Protocol

SLA Service Level Agreement

SoC System-on-Chip

Sonet Synchronous Optical NETwork, similar to  SDH and interoperable

with SDH networks, standardized optical transmission scheme by 

ANSI used in North America

SPC Serial-to-Parallel Converter

SPD Security Policy Database

SRAM Static Random Access Memory

TCAM Ternary  CAM

TCP Transmission Control Protocol (defined in  IETF RFC 793)

TTL time-to-live, header field in  IP packets

TX Transmit

UDP User Datagram Protocol (defined in  IETF RFC 768)

UMTS Universal Mobile Telecommunications System, 3rd generation mobile

cellular network standard

VHDL Very high speed integrated circuit Hardware Description Language

VLAN Virtual  LAN

VLIW Very Long Instruction Word, special type of processor architecture

VoIP Voice-over-IP

VPN Virtual Private Network

WAN Wide Area Network

WEP Wired Equivalent Privacy

WLAN Wireless  LAN

WPA Wi-Fi Protected Access

Appendix

260

Appendix

 261

List of Prior-Printed Publications

During the course of the FlexPath project, a number of publications were released,

covering different aspects of the NP architecture and scientific contributions

claimed within this dissertation. The complete list of own (title in bold in the

following) and co-authored publications was submitted to the faculty of electrical

engineering and information technology along with this dissertation in accordance

with § 6 (1) 2 and § 6 (5) 3 of the Promotionsordnung der Technischen Universität

München (Doctoral Examination Regulations):

1. R. Ohlendorf, A. Herkersdorf, T. Wild, "FlexPath NP - A Network Processor

Concept with Application-Driven Flexible Processing Paths", CODES+ISSS

2005, Jersey City, NJ, USA, September 19-21, 2005, ([7])

2. M. Meitinger, R. Ohlendorf, T. Wild, A. Herkersdorf, "Application Scenarios for

FlexPath NP", Technical Report, TUM-LIS-TR-0501, December 2005, ([45])

3. T. Wild, A. Herkersdorf, R. Ohlendorf, "Performance Evaluation for System-on-

Chip Architectures using Trace-based Transaction Level Simulation", DATE

2006, Munich, Germany, March 6-10, 2006, ([81])

4. A. Herkersdorf, C. Claus, M. Meitinger, R. Ohlendorf, "Reconfigurable

Processing Units vs. Reconfigurable Interconnects", Dagstuhl Seminar on

Dynamically Reconfigurable Architectures, Dagstuhl Seminar Proceedings

06141, Dagstuhl, Germany, April 2-7, 2006

5. R. Ohlendorf, T. Wild, M. Meitinger, H. Rauchfuss, A. Herkersdorf,

"Performance Evaluation of RISC-based SoC Platforms in Network

Processing Applications", IC-SAMOS 2006, Samos, Greece, July 17-20,

2006, ([82])

6. M. Meitinger, R. Ohlendorf, T. Wild, A. Herkersdorf, "A Programmable Stream

Processing Engine for Packet Manipulation in Network Processors", ISVLSI

2007, Porto Alegre, Brazil, May 9-11, 2007

7. R. Ohlendorf, T. Wild, M. Meitinger, H. Rauchfuss, A. Herkersdorf, "Simulated

and measured performance evaluation of RISC-based SoC platforms in

network processing applications", Journal for Systems Architecture, vol. 53,

no. 10, pp. 703-718, October 2007, ([83])

8. R. Ohlendorf, M. Meitinger, T. Wild, A. Herkersdorf, "A Packet Classification

Technique for On-Chip Processing Path Selection", WASP 2007, Salzburg,

Austria, October 4-5, 2007, ([84])

Appendix

262

9. M. Meitinger, R. Ohlendorf, T. Wild, A. Herkersdorf, "A Hardware Packet

Resequencer Unit for Network Processors", ARCS 2008, Dresden, Germany,

February 25-28, 2008

10. T. Pionteck, R. Koch, C. Albrecht, E. Maehle, M. Meitinger, R. Ohlendorf, T.

Wild A. Herkersdorf, "SPP1148 Booth: Network Processors", FPL 2008,

Heidelberg, Germany, September 8-10, 2008, p. 352, DOI:

10.1109/FPL.2008.4629960

11. R. Ohlendorf, M. Meitinger, T. Wild, A. Herkersdorf, "A Processing Path

Dispatcher in Network Processor MPSoCs", IEEE Transactions on VLSI

Systems, vol. 16, no. 10, pp. 1335-1345, October 2008, ([56])

12. M. Meitinger, R. Ohlendorf, T. Wild, A. Herkersdorf, "FlexPath NP - A Network

Processor Architecture with Flexible Processing Paths", SoC 2008, Tampere,

Finland, November 4-6, 2008, ([106])

13. S. Hauger, T. Wild, A. Mutter, A. Kirstädter, K. Karras, R. Ohlendorf, F. Feller, J.

Scharf, "Packet Processing at 100 Gbps and Beyond - Challenges and

Perspectives", 10. ITG Fachtagung Photonische Netze, Dresden, Germany,

May 4-5, 2009 ([5])

14. S. Traboulsi, M. Meitinger, R. Ohlendorf, A. Herkersdorf, "An Efficient Hardware

Architecture for Packet Re-sequencing in Network Processor MPSoCs", 12th

Euromicro Conference on Digital System Design (DSD'09), Patras, Greece,

August 27-29, 2009

15. R. Ohlendorf, M. Meitinger, T. Wild, A. Herkersdorf, "An Application-aware

Load Balancing Strategy for Network Processors", HiPEAC 2010, Pisa,

Italy, January 25-27, 2010, ([72])

16. M. Platzner, J. Teich, N. Wehn (Eds.), "Dynamically Reconfigurable Systems:

Architectures, Design Methods and Applications", Chapter 17 - FlexPath NP -

Flexible, Dynamically Reconfigurable Processing Paths in Network Processors,

pp. 355-374, ISBN 978-90-481-3484-7, Springer Science+Business Media B.V.

2010, ([31], chapter 17)

17. A. Herkersdorf, A. Lankes, M. Meitinger, R. Ohlendorf, S. Wallentowitz, T. Wild,

J. Zeppenfeld, "Hardware Support to Exploit Parallelism in Homogeneous and

Heterogeneous Multi-Core Systems on Chip", chapter in "Multiprocessor

System-on-Chip: Hardware Design and Tool Integration", ISBN 978-

1441964595, © Springer, Berlin, November 2010

