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Summary of the Thesis 

This thesis deals with improvements of switching nodes in Internet-based 

communication networks. During the past decade, increasing requirements for the 

networking infrastructure (i.e. routers, gateways, etc.) have led to the development 

of network processors (NPs). Network processors are highly integrated silicon 

components that achieve both high flexibility and performance. Contemporary 

networking infrastructure has to provide the flexibility of adapting to ever-changing 

new application needs, while the link speeds have increased to tens of gigabits per 

second with 100 Gbit/s already on the horizon. The current thesis proposes a new 

architectural approach to the network processing problem, in which dedicated 

hardware modules in the ingress and egress data path relieve a central processor 

cluster. The flexibility of the programmable processor cluster can be retained for 

those tasks that require this flexibility. More standardized tasks are solved by 

application-specific high performance hardware. Especially, a hardware unit for 

packet classification is proposed, which identifies the incoming traffic in real-time 

and dispatches the packets to the most suitable processing elements within the 

heterogeneous multi-processor cluster. Beyond a static processing path selection 

based on networking application characteristics, I have also investigated load 

balancing strategies that distribute the packets to paths supporting different quality-

of-service levels within the NP. The presented hardware offload doubles the 

forwarding throughput of the NP in comparison to state of the art architectures with 

the same amount of processing resources. 
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Zusammenfassung der Arbeit 

Die vorliegende Arbeit beschäftigt sich mit Verbesserungen von Netzknoten in 

Internet-basierten Kommunikationsnetzen. Steigende Anforderungen an die 

Netzwerkinfrastruktur (z.B. in Routern, Gateways, etc.) haben im letzten Jahrzehnt 

die Entwicklung von Netzwerkprozessoren (NPs) befördert. Netzwerkprozessoren 

sind hochintegrierte Siliziumbausteine, die gleichzeitig hohe Anforderungen an 

Flexibilität und Performance erfüllen. Die heutige Netzwerk-Infrastruktur muss 

flexibel genug sein, um sich an immer neu entstehende Anwendungsanforderungen 

anzupassen, während die Geschwindigkeiten auf den Übertragungsstrecken 

mittlerweile bei mehreren zig Gigabit pro Sekunde liegt und erste 100 Gbit/s 

Strecken in naher Zukunft folgen werden. Die vorliegende Arbeit schlägt einen 

neuartigen architekturalen Ansatz im Design von Netzwerkprozessoren vor, in dem 

dedizierte Hardware-Module im Ein- und Ausgangsdatenpfad den zentralen 

Netzwerkprozessorkomplex entlasten. Die Flexibilität der programmierbaren 

Ressourcen wird nur noch für die Aufgaben verwendet, die diese Flexibilität auch 

benötigen, während andere, besser standardisierte Aufgaben von spezialisierten 

Hardware-Modulen bearbeitet werden. Im Speziellen wird eine Hardware-

Klassifikationseinheit vorgeschlagen, die den ankommenden Verkehrsfluss in 

Realzeit untersucht und die Pakete auf die für sie am Besten geeigneten 

Verarbeitungseinheiten innerhalb des heterogenen Multiprozessorclusters verteilt. 

Neben der statischen Verarbeitsungspfadwahl aufgrund von 

Applikationsanforderungen, habe ich in dieser Arbeit Lastbalancierungsstrategien 

untersucht, welche die Pakete auf Pfade mit unterschiedlichen 

Dienstgütemerkmalen (quality-of-service) innerhalb des NP-Systems verteilt. Die 

vorgestellte Entlastung des Prozessorclusters ermöglicht eine Verdoppelung des 

Paketdurchsatzes im Vergleich zu einem herkömmlichen NP mit gleich vielen 

Rechenressourcen. 
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1. Introduction 

The work covered in this thesis is positioned in the context of Internet-based 

communication systems. I have proposed and investigated a new architecture for 

network processors (FlexPath NP) that optimizes the packet processing 

performance by providing different run-time reconfigurable processing paths and 

hardware-offload features that relieve the programmable processor resources. The 

following sections introduce the reader to the topic by describing the evolution of 

the Internet and give a high-level description of the packet processing infrastructure 

and networking application requirements. Based on these high-level observations, 

the fundamental ideas of the FlexPath NP architecture are mentioned and the 

introduction is concluded with the organization of the subsequent chapters of the 

dissertation. 

Classical computer networks found in enterprises and universities, as home and 

office networks in residential areas and the server clusters operated by Internet 

service and content providers made up the Internet during the 1990s. Around the 

year 2000, an integration of the classical telephony networks (public switched 

telephone network, PSTN) and data networks took place. The introduction of Voice-

over-IP (VoIP) protocols allowed transferring voice connections over asynchronous 

packet switched networks that were originally developed for data communication. 

Otherwise, backbones in the data networks started using Sonet/SDH technology 

with their high transmission bandwidth, which was originally developed to transmit 

high-order multiplexed voice signals in a strictly synchronous network. Around the 

same time, data services began to be offered by the mobile telephone providers 

(e.g. with GSM/GPRS and evolution towards 3G technologies found in UMTS), 

linking their networks into a unified, globally meshed communication network 

supporting both voice and data transmission.  

The more widespread availability of the Internet to the general public and the 

increasing access speeds offered as customers were able to migrate from dialup 

connections (14 - 56 kbit/s) to DSL and cable modems (1 - 30 Mbit/s) also led to the 

introduction of new services, most importantly e-Commerce and multimedia. Those 

new applications, in addition to "plain" web traffic like http and email, required 

widespread use of cryptography for confidential data and a differentiation and 

prioritization of real-time from non-real time user applications. In a subsequent step, 

peer-to-peer applications, where individual users share content among each other 

(in contrast to the classical client-server model, where content is kept in a 

centralized place) caused an additional shift in communication patterns and 

increased the total traffic amounts in the Internet.  

As a result of the above mentioned trends and developments, an exponential growth 

in Internet backbone transmission bandwidth with annual growth rates between 
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60% and 100% on average could be observed throughout the last decade [1]. This 

growth imposes significant pressure to improve the performance of the network 

architecture. 

The networks making up the Internet are organized in a hierarchical fashion (see 

also Figure 1) with routers aggregating the traffic to and from smaller sub-networks 

and forwarding them towards the destination networks via peering or backbone 

links in the WAN core. Please note that the figure shows only the basic structure of 

the network aggregation and interconnection structure, the physical instances are 

not corresponding to an actual architecture, as such information is not publicly 

available from the actual ISPs.  
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Figure 1: Hierarchical Structure of the Internet 

Residential customers and companies/universities connect to the Internet through 

the ISPs' points-of-presence, usually entering an aggregation network that 

combines the traffic originating from the same geographical region. Of course, these 

networks allow switching traffic directly between locally close neighbors, while 
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networks lying further apart (this notion of distance applies also to networks 

attached to a different ISP operating in the same geographical region!) have to be 

reached through the wide area network. Although there exist some peering links 

between individual ISPs on a more regional level, the global connectivity is generally 

achieved through Internet Exchange Points [4], where so-called Tier 1 ISPs cross-

connect their locally attached networks with each other. 

Special gateway routers are found at the borders of the individual networks, so that 

the different providers have the ability to perform traffic monitoring and policing, and 

are able to translate traffic to a different protocol stack, which may be used in the 

adjacent network. The enforcement of inter-provider service level agreements (SLAs) 

at the network borders and eventual protocol conversions require a flexible router 

infrastructure with lots of general-purpose computing power. The same also holds 

true for the access equipment, where traffic first enters a provider's network and has 

to be inspected in order to achieve billing and accounting purposes as well as 

filtering functions, in order to block malicious behavior (B-RAS devices in Figure 1).  

Traffic inside a provider's own network, which has to be forwarded between several 

internal switches or routers to reach the final endpoint of the network, is typically 

only forwarded without further packet inspection. In the Internet core, this is often 

achieved by using MPLS (multi-protocol label switching), which assigns pre-

configured, locally unique labels for each of the predefined connections based on 

the initial routing information; and routers within the MPLS network perform a simple 

switching only on the MPLS labels rather than performing the traditional switching or 

routing function. As the MPLS labels are determined at the edges of an MPLS 

network by inspecting the IP destination addresses and QoS (quality of service) 

parameters of the packet, this kind of forwarding is often referred to as layer 2.5 

forwarding [5]. In recent years, development of "carrier-grade" Ethernet technologies 

has started a trend among ISPs to simply switch the traffic based on L2 information 

rather than performing L3 routing based on the IP addresses in the packet. 

As defined in RFC 1812 [2], routers are those functional entities in the network that 

perform the forwarding function with the help of routing protocols. As the variety of 

application layer protocols has increased dramatically since the early days of the 

Internet, and those applications come with greatly differing QoS requirements, 

DiffServ [3] has been introduced as a framework for differentiating traffic in the 

routers into different service classes and treating them in various different ways. 

Some of the necessary functions required to achieve QoS are packet filtering, 

metering and policing, and forwarding packets on different priority levels. Such QoS 

architectures are not only constrained to the IP protocol suite, but can also be found 

in recent Ethernet standards (e.g. VLAN IEEE 802.1Q), ATM and MPLS networks. In 

all places, where formerly unrelated networks are coupled together, gateways 

assure interoperability of the communication on both sides. In contrast to classical 
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routing, which is constrained to layer 3 of the OSI protocol stack, gateways may 

also work on higher layers up to the application layer (L7). 

Figure 2 shows the modular architecture for routers and application gateways 

following standards such as AdvancedTCA [6]. The AdvancedTCA specification only 

provides standardization for the mechanical and electrical characteristics for rack-

based communication systems (e.g. size of pluggable cards, electrical power 

supply, thermal power dissipation and a common backplane wiring scheme). Each 

vendor has the freedom to choose from a range of different backplane protocols 

and speeds and switch fabric parameters like line card connectivity and redundancy 

depending on the application requirements. 

Physical View

(ATCA Rack)

B
a

c
k
p

la
n

e

Switch

Fabric

Line Card

PHY MAC
Link

(el. or opt.)

Packet 

Processing

Memory

Fabric

Interface

Line Card

PHY MAC
Link

(el. or opt.)

Packet 

Processing

Memory

Fabric

Interface

:

Functional View

Backplane

Line C
ard

Switc
h Fabric

Contro
l &

 M
anagement

 

Figure 2: Typical Router Implementation with ATCA Standard 

The actual packet processing takes place in one or several packet processing 

circuits on the individual line cards, while both line cards or the processing entities 

may be implemented in a half duplex or full duplex operation mode.  

Traditionally, there existed high-performance ASIC (application-specific integrated 

circuit) solutions for high-speed switching in the telephony backbones. These 

solutions yielded a high performance, but as a hardwired function, they provided no 

flexibility / adaptability to newly emerging protocols and applications. A change in 

any of the transmission protocols comes at the cost of designing a new ASIC that 

can then be deployed in an improved line card. On the other hand, first routers in 

data networks were comprised of general-purpose PC systems with several network 

interface cards that implemented the forwarding functions and routing protocols in 

software. New protocols and functions could be easily deployed and tested by 

modifying the software, of course at a significantly lower performance level 

compared to the highly-optimized ASIC solutions.  

With the integration of formerly separated networks and the advent of new 

applications and protocols around the year 2000, packet processing had to become 
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significantly faster while retaining the flexibility associated with the previous 

software implementations. Thus a migration of router technology from a general-

purpose PC system to a custom-made ASIC (as they had been used in the 

telephony networks) would not serve the purpose. To address this performance / 

flexibility dilemma, network processors (NPs) were proposed to bridge the gap 

between slow but flexible general-purpose processors and high-performance ASIC 

implementations with their lack of flexibility and high development costs.  

In general, NPs rely on a combination of application-specific instruction set 

processors (ASIP) and hardware accelerators. Hardware acceleration is used for 

networking-specific tasks that are common across many applications or where it is 

mandated by the computational complexity (e.g. cryptography). In addition, many 

NP architectures implement line / MAC / switch fabric interfaces on-chip and 

contain a set of memory controllers and connections to dedicated, off-chip 

hardware accelerators via standardized interfaces. This integration simplifies the 

board design of the router linecards and improves the overall system reliability, 

which is also an important aspect in the telecommunication industry. However, it is 

important to realize that no standard architecture has been found yet. Every NP 

vendor offers its specific solution, and designs from different suppliers look quite 

differently for NPs targeting different market segments and networking applications. 

Based on an analysis of the first generation of network processors, the FlexPath NP 

architecture is proposed [7] that improves the performance of the NP by  

– enhancing the software-programmable capabilities of the NP with hardware 

offload in order to relieve the processors from simple, recurring tasks faced 

across many networking applications and 

– providing a variety of run-time reconfigurable processing paths (i.e. functional unit 

traversal sequences) in the data plane of the device that are optimized for the 

requirements of different networking applications. 

The fundamental idea behind the FlexPath NP architecture is to dynamically adapt 

the processing paths for the arriving packets so that the requirements of the current 

traffic load can be best met by the available resources in the device. A special 

hardware unit called Path Dispatcher performs a real-time classification of the 

incoming traffic into a set of application classes, for which optimized processing 

paths are provisioned in the FlexPath NP architecture. These processing paths 

include traditional programmable processor resources, arbitrary combinations of 

hardware offload units and software processors and a dedicated hardware-only 

forwarding path ("AutoRoute") for simple switching / forwarding functions. The 

classification function can be achieved by the heterogeneous decision graph 

algorithm (HDGA), which is fine-tuned to the constraints of on-chip real-time packet 
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classification at multi-Gigabit/s packet rates. In contrast to most state-of-the-art 

classification techniques, which operate on five or less different header fields, HDGA 

scales for rules bases with up to 20 dimensions. The architectural support for 

assigning the packets to different processing paths can inherently be used to 

address the load balancing problem among several parallel processing instances. 

This thesis presents a combination of packet spraying and hash-based load 

balancing (S&H) as a novel load balancing strategy, which achieves a high 

processor utilization and system throughput by taking into account the different 

characteristics and requirements of various networking applications. 

The remainder of the dissertation is organized in the following way:  

– Chapter 2 covers the complete state-of-the-art relevant to the individual 

contributions of this thesis, starting with existing commercial network processors 

and academic approaches in the NP field (section 2.1). The NP state-of-the-art is 

complemented by a survey of currently important and evolving networking 

protocols (section 2.2). Section 2.3 summarizes previous work in the field of 

packet classification techniques as a base for the derivation of HDGA. Finally, 

existing load balancing strategies for NPs are presented in section 2.4.  

– Chapter 3 presents the FlexPath NP concept with its specific architectural 

modules based on an analysis of existing networking applications and NP 

architectures. The claims made during the presentation of the architectural 

concept are further supported by system-level performance simulation results, 

which focus on the potential of performance improvements that the hardware-

offload aspects in a FlexPath NP offer compared to a traditional processor-centric 

NP architecture. 

– Chapter 4 focuses on the Path Dispatcher unit, which performs the real-time 

packet classification task in the FlexPath NP system. The elaboration comprises 

the concept of HDGA, functional simulation results and finding an optimized 

architecture for efficient hardware implementation. The chapter is concluded with 

synthesis results for the Path Dispatcher unit in an FPGA demonstrator platform.  

– Chapter 5 introduces a combination of two different load balancing schemes 

(packet spraying and hash lookup, S&H) that exploit optimum performance of the 

processor resources in a given FlexPath NP architecture. Functional simulation 

results are provided that compare the individual components and the combined 

scheme to several techniques of the prior art. The achievable performance 

benefits are shown based on realistic Internet backbone traffic traces.  

– Chapter 6 presents the implemented components and system setup of a 

combined FlexPath NP / SmartMem demonstrator on a Xilinx Virtex-4 FPGA 

development board. Selected measurement results are presented that illustrate 
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the performance of the FlexPath NP approach and prove the validity of the 

assumptions made during the concept development and simulations.  

– Finally, chapter 7 summarizes the scientific contributions of this dissertation to the 

state of the art and presents an outlook to possible future research directions 

based on the lessons learned during the FlexPath NP project. 

The work presented in this dissertation originates from the FlexPath NP project, 

which was associated with the German research foundation's priority program 

"Reconfigurable Computing" (SPP 1148) during the time frame 2005 - 2009. Two 

dissertations cover the entire work performed in the FlexPath project, with the 

current thesis focusing mainly on the ingress data path pipeline elements and load 

balancing strategies and the other dissertation by Michael Meitinger ([107]) 

discussing the egress data path pipeline elements. For the demonstration purposes 

in both theses, we implemented a common demonstrator of a FlexPath NP on an 

FPGA development platform that also includes the SmartMem DMA engine, which 

was developed in a parallel project by our colleague Daniel Llorente, and is covered 

in his dissertation ([108]).  
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2. State of the Art 

The following chapter illustrates the state of the art for the work covered in this 

thesis, and is divided into three main topics:  

– The first topic (section 2.1) focuses on the evolution of network processors during 

the past ten years and presents current implementation solutions and related 

academic approaches. In addition, the current application mix in the Internet is 

characterized (section 2.2) from which conclusions about the requirements for 

future networking compute architectures are drawn. The analysis of these two 

fields triggered the proposal of the FlexPath NP architecture, which is derived in 

detail in chapter 3.  

– The second topic (section 2.3) focuses on existing approaches in packet 

classification. This field is relevant to the major contribution of this Dissertation, 

the HDGA packet classification scheme implemented in the Path Dispatcher, 

which is presented in chapter 4.  

– The state of the art survey is concluded by discussing approaches to load 

balancing in network processors (section 2.4), which is an important function in 

multi-processor systems in general. Load balancing in the context of FlexPath NP 

is addressed in chapter 5. 
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2.1. Network Processors 

2.1.1. Commercial Network Processor Architectures 

2.1.1.1. Commercial NPs Prior to the FlexPath NP Proposal 

Although the survey on NPs undertaken by Shah [9] dates back to the year 2001, 

this document provides an excellent starting point for understanding the evolution of 

the network processor field. Therefore, a selection of NPs from that period should 

be presented first in order to show the evolution of these devices and draw 

conclusions about the architectural trends that have taken place in the market ever 

since. 

The Agere Payload Plus NP [10] is a multi-chip solution that consists of a Fast 

Pattern Processor (FPP) and Routing Switch Processor (RSP) in the data path and 

the Agere System Interface (ASI) for control plane functions and communications 

with a management host. The FPP receives the packets from the link, parses the 

packet and hands it over to the RSP chip. The FPP consists of a multi-threaded, 

pipelined processor and hardware assists for pattern matching and checksum / 

CRC calculations. The RSP chip receives the packets from the FPP along with 

certain classification information and performs traffic management, traffic shaping 

and queuing functions before performing final modifications on the packet and 

sending them out towards the switch fabric. The functions are implemented with 

three dedicated VLIW (very long instruction word) processors: traffic management 

compute engine, traffic shaper compute engine and stream editor compute engine. 

In addition to the VLIW processors, the chip provides interfaces to external SDRAM 

to store the packets while they are being queued. 

The MSP5000 processor from Brecis Communications [11] addresses converged 

voice and data communications linking enterprise sites to the network edge. The 

task is achieved by two DSP (digital signal processor) processors for voice and 

packet processing while a MIPS RISC (reduced instruction set computer) core takes 

over control plane functions. The processors communicate with a special QoS-

aware system interconnect (Multi-Service Bus Architecture) with a peak data rate of 

3.2 Gbit/s. The processors are complemented on-chip with a set of hardware 

accelerators for cryptographic functions and CRC (cyclic redundancy check) 

calculation. 

IBM's Power NP [12] is a representative of a massively parallel processor cluster. 

Apart from a single general-purpose PowerPC that is used for control plane 

processing, it features an embedded processor complex with 16 programmable 

protocol processors. In addition to the 16 cores, there are seven specialized 

hardware accelerators for DMA (direct memory access), checksum calculation, 

traffic shaping and policing and inter-processor communication. 
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The PXF NP from Cisco [13] features 16 processors arranged in eight parallel 

pipelines. The pipeline depth may be extended by chaining several PXF chips in a 

router system. By forcing the packet processing task into a pipeline structure, with 

every processor performing only a specific sub-task, a deterministic behavior of the 

NP with respect to packet throughput may be achieved. 

Intel's IXP 1200 NP [14] also follows the processor cluster architecture found in the 

IBM Power NP. It provides six multi-threaded microengines that support a total of 

24 tasks in the system. The instruction set of the microengines is specifically 

optimized for packet processing and they have to be programmed in their own 

assembly language in order to achieve maximum performance. The NP comes with 

integrated hardware support for hashing and queue management and features a 

StrongARM RISC processor for control and management purposes. 

The X40 NP from Xelerated [15] targets the high speed end of the NP spectrum. It 

consists of a single pipeline with 10 stages; each stage consists of a classification 

and action stage. The action stage is made up of a packet instruction set computer 

(PISC), which is a processor with a specialized ISA (instruction set architecture) for 

packet processing. In addition, the chip allows accessing external memory and 

CAM (content addressable memory) from all pipeline stages. During operation, every 

stage in the pipeline works on a different packet and completes processing within a 

single clock cycle, thus achieving very high packet rates. 

2.1.1.2. Evolution of the Commercial NP Field after the FlexPath NP Proposal 

Following the burst of the New Economy bubble, a wave of consolidation started in 

the NP business. Some vendors went out of business, others were acquired by 

larger companies or product lines were spun off to new companies. Successful 

product lines, e.g. Intel's IXP product line, evolved over several generations. More 

processor cores were added to the system, interconnect structures upgraded, 

memory and I/O interfaces adapted for newer standards [16] and the devices were 

scaled down to new CMOS process generations. Starting with the IXP2400 series of 

NPs, the microengines were equipped with special "next-neighbor" interconnect 

registers. They allow very efficient passing of data among neighboring 

microengines, thus enabling a pipelined programming model in addition to the 

parallel processor cluster model of the IXP1200 series. Moreover, a further 

differentiation for the various targeted market segments could be observed. In 2005, 

processors from the second generation existed in a range of two to 16 

microengines, clock frequencies between 600 MHz and 1.5 GHz and target line 

rates between 1 Gbit/s and 10 Gbit/s. The latest model (IXP2855, [17]) also features 

two hardware crypto cores that enable IPsec processing at up to 10 Gbit/s. 

However, in 2007 Intel sold its NP line to Netronome, which will further develop NP 

products evolving from the IXP28xx. 
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In January 2006, SafeNet announced the SafeXcel IP inline security engine [18] as a 

security application co-processor that works as a full-fledged offload for security 

application handling from general-purpose compute architectures in network 

processor SoC designs. The security engine can be used either as a traditional co-

processor, relieving the general-purpose parts of the NP from the compute-intensive 

cryptographic algorithms, but it can also be integrated as an autonomously 

operating processor in "bump in the stack" (i.e. packets are en-/decrypted before 

reaching the processor, so that the processor sees only plaintext packets) or "bump 

in the wire" (i.e. packets are processed without even being touched by the 

processor) use cases. Especially the last mentioned "bump in the wire" use case is 

based on essentially the same idea as the proposed AutoRoute feature in a FlexPath 

NP, which will be described in detail in chapter 3.2. The architecture appears to be 

commercially successful, as the device is still actively marketed in 2009 [19]. Figure 

3 shows the architecture of the SafeXcel-IP-196 block as of 2009. 
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Figure 3: SafeXcel-IP-196 IP Flow-Through Packet Engine 

The nP7300 from AMCC [20] follows the run-to-completion operation model (Figure 

4a) with three nPcore processors, each of which supports 24 tasks. From the point 

of view of the NP programmer, the system performs like a 72 core processor, while 

the packet processing task for each packet is executed in a single thread. 

Consequently, there is no multi-processor overhead necessary during software 

development, i.e. the programmer does not need to consider splitting the 

application into several chunks, which might be distributed among the processors 

and organize data communication and synchronization between the cores. The data 

plane processor complex is enhanced with a Channel Service Module (CSM) that 

provides an autonomous DMA function to store and retrieve packets from the I/O 

interfaces without processor intervention. The chip also includes a dedicated traffic 

manager for traffic shaping, policing and queuing and a separate hashing unit. 

Memory and external co-processors (e.g. TCAM memories) can be accessed via 

standardized interfaces. The nP7300 has no dedicated control plane processor on 

chip, but can be connected to a host via 10/100/1000 Ethernet and the data plane is 

targeted for 10 Gbit/s half-duplex operation. 
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Netronome's NFP3200 NP [21], which is the first successor of Intel's IXP28xx 

product line, now features up to 40 microengines for data plane processing with 

local instruction stores optimized for run-to-completion or pool-of-threads 

programming models. In addition, an ARM11 embedded RISC core is used for IPsec 

key exchange algorithms, routing table updates and system management functions. 

The NP also comes with a hardware cryptography module that supports up to 10 

Gbps, while the 40 microengines allow packet processing at 30 Mpps or 20 Gbps 

with 2,000 instructions per packet. 

In 2008 Cisco released information about its own Quantum Flow Processor [24], 

which is initially a two-chip solution with one chip for the processors and a second 

chip for traffic management. The processing chip consists of 40 Tensilica RISC 

processor cores [25] that are C-language programmable and provide four threads 

per core at 900 MHz to 1.2 GHz. The packets arriving from either the line interfaces 

or the switching fabric are first handled by the traffic manager chip, which also 

provides access to a centralized memory and includes all system I/O interfaces. 

When the packets are ready for processing, they are dispatched to one of the 160 

threads in the processor engine chip, which are connected with the rest of the 

system via a crossbar switch architecture. The initial two chip solution will be used 

in Cisco's ASR 1000 series aggregation switch routers with an internal packet 

processing capability of 5 to 100 Gbps. There are plans to integrate the system into 

a single chip design and increase the number of processor cores in the packet 

processor engine in future versions of the NP. 

Another current design that adheres to the parallel processor cluster architecture is 

the Octeon II processor family from Cavium Networks [26], of which first processors 

are announced to ship in the fourth quarter of 2009. The NP family will feature a new 

generation of 64bit MIPS cores in the data plane. There will be devices with 1 to 32 

cores, each of them running between 800 MHz and 1.5 GHz. There are also up to 75 

hardware accelerators available in the system, which are connected to the cores via 

an eight Tbps Hyperconnect crossbar switch. The first NP generation targets the 40 

Gbps market but is claimed to provide I/O capabilities for up to 100 Gbps. 

Xelerated still pursues the strict pipeline approach (Figure 4b in section 2.1.3) with 

its X11 NP [22] released in 2008. In contrast to the X40 [15], the X11 features five 

blocks of 32 pipelined PISC processors, thus 160 processors in total. External 

memories and hardware accelerators may be accessed only from distinct Engine 

Access Points (EAP) at the beginning of each of the five pipeline blocks. The EAP 

includes packet buffers to cope with the latency associated with the individual 

accelerators or memory accesses. With a core frequency of 240 MHz the X11 is able 

to process packets at up to 24 Gbps. Xelerated has also announced a new 

generation of network processors (HX family) that addresses the evolving 100 Gbps 

Ethernet market. In comparison to the X11 NPs, the number of processors in the 
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programmable pipeline is increased to 512 and the devices feature an integrated 

traffic manager and switch fabric [23]. It is characterized by Xelerated with the term 

"linecard on a chip", due to its high level of integration that needs only external 

DRAM, TCAM (NSE) and PHYs as additional off-chip elements. 

2.1.2. Academic Network Processor Projects 

2.1.2.1. Academic NP Investigations Prior to the FlexPath NP Proposal 

The Field-Programmable Port Extender (FPX) developed at Washington University in 

St. Louis [27] in 2001, provides an FPGA-based reconfigurable platform for network 

processing for ATM. The platform comprises an extension board with two FPGAs, 

which can be plugged in between the line card and switching backplane interfaces 

of an ATM-based Gigabit switch (WUGS). The first FPGA, which comprises a 

simple, reconfigurable switching fabric with a small control memory allows to route 

incoming traffic on a flow-level granularity (i.e. ATM VPI/VCI numbers) between the 

line card interfaces, switching backplane and two dynamically reconfigurable slots in 

the second FPGA. In addition, by sending special control cells to this FPGA, 

bitstreams for the second FPGA can be transmitted over the network, allowing a 

subsequent (partial) reconfiguration of the other FPGA. The second FPGA contains 

two reconfigurable slots for the actual user-defined packet processing functions and 

has interfaces to external SRAM and SDRAM. The FPX platform has been used to 

demonstrate IP packet routing, per-flow queuing and flow control and application-

level content inspection and modification. By making use of reconfigurable FPGA 

resources in the network processing device, the benefits of run-time modification of 

the packet processing function can be combined with the hardware-like 

performance of the FPGA logic. 

In 2002, Troxel et.al. from the University of Florida at Gainesville [28] propose a 

network processor architecture that allows to dynamically reconfigure the pipeline 

depth of microengines in an Intel IXP1200-like processor configuration during 

system runtime in order to improve the overall system performance given 

fluctuations in the arriving traffic pattern. The authors present only simulation results 

of the proposed system. Assuming that the networking application can be executed 

on microengine pipelines of various depths (i.e. the task can be partitioned to run on 

one, two or three engines with different resulting processing times per processor), 

they can exploit a performance gain by changing the pipeline depths assigned to 

different traffic types during the system runtime. They present an application 

scenario from a defense application with three different packet types, so that a 

generalization to Internet traffic is not straightforward. 

The PRO3 network processor proposed by Papaefstathiou et.al. from Ellemedia and 

the Technical University of Crete [29] in 2004 introduces dedicated hardware 

support for DMA and queuing operations in the NP SoC and enhances two 
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programmable RISC cores with two dedicated hardware accelerators. The field 

extraction unit (FEX), which is a firmware-configurable hardware assist, parses the 

incoming packet and may write important header fields into the register file of the 

processor. The processor can then execute the actual high-level part of the 

networking application and the field modification unit (FMO) is available for writing 

back results from the RISC core registers into the packet, which may include bit- 

and byte-level operations that are hard to implement efficiently in the general-

purpose RISC core. The authors show, that a PRO3 system with two FEX-RISC-

FMO pipelines achieves a similar performance for benchmark TCP and UDP 

applications in comparison to the Intel IXP2400 with 6 microengines. In addition, 

they could demonstrate that the hardware-based queue management in the PRO3 is 

significantly more efficient than the standard software-based solution in the IXP, 

such that both systems could deliver roughly the same performance, while the 

PRO3 chip consumes only about one fifth of the IXP's die area. 

In 2005, Ravindran et.al. from the University of California at Berkeley [30] 

investigated the forwarding performance of a network processor architecture based 

on parallel Xilinx Microblaze processor pipelines. After optimizing the partitioning of 

the IPv4 forwarding application onto a three-stage pipeline, a total system 

throughput of 1.8 Gbps can be achieved with a total of 12 Microblaze processors in 

four parallel pipelines. This value is compared to the forwarding performance of an 

Intel IXP2800, which achieves 10 Gbps with its 16 optimized microengines. After 

normalizing the results to chip area, the authors show that the FPGA-based solution 

performs only a factor of 2.6 worse than the commercial NP. The claimed benefit of 

the FPGA solution is that by using soft processor IP with the provided toolchain and 

standard off-the shelf FPGA products is an attractive choice for niche application 

domains, where the cost of starting a full ASIC design may be too high in 

comparison to the expected number of units to sell. 

2.1.2.2. Academic NP Investigations after the FlexPath NP Proposal 

DynaCORE ([31], chapter 16, pp. 335-354 and [90]), which was developed at the 

University of Lübeck in 2006, is a dynamically reconfigurable co-processor for 

compute-intensive payload manipulations in network processor systems. The 

FPGA-based architecture combines the near-hardware performance of an FPGA 

implementation with the dynamic partial reconfiguration capabilities offered by Xilinx 

FPGAs. The static part of the DynaCORE provides system I/O interfaces for 

communication with the off-chip NP (e.g. a commercial NP or our FlexPath NP 

demonstrator system (see [91])) and a controller for system monitoring and 

reconfiguration management. As requests arrive from the attached NP to execute 

cryptographic algorithms or pattern matching applications on the arriving packets, 

the reconfiguration controller insures that a sufficient amount of hardware 

accelerators is dynamically configured into the reconfigurable slices of the system 
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and forwards the incoming packets to the respective unit. Correct routing of the 

packets and glitch-free operation of the DynaCORE during partial reconfigurations is 

achieved by a special network-on-chip architecture called CoNoChi. 

Another run-time reconfigurable NP architecture was presented by Kachris et.al. at 

the University of Delft in 2006 ([32]). They regard an NP architecture based on a 

Xilinx FPGA with either the Microblaze soft core or PowerPC hard core processors 

as central processing elements. These programmable resources may be assisted 

with hardware accelerators for Checksum calculations, DES encryption or IDCT 

transcoding as representative examples for plain IP forwarding, IPsec or voice/video 

application processing. The respective functionality may however also be achieved 

by the processors (at a lower performance level). Now, Kachris assumes different 

shares for the individual networking applications and computes an optimum 

combination of accelerators (type and quantity) in order to maximize throughput. 

During system runtime, the current load on the network interfaces is monitored and 

the hardware accelerators are dynamically reconfigured in order to yield maximum 

utilization of the available soft- and hardware instances. 

The GigaNetIC architecture [33] developed by Niemann et.al. at the University of 

Paderborn in 2007 proposes a massively parallel multi-processor system for 

networking applications. Clusters consisting of four embedded RISC processors 

with local memories and hardware accelerators are interconnected using a 2D-mesh 

network-on-chip. Peripherals and hardware assists with system-wide relevance (e.g. 

Ethernet cores, IPsec accelerators, etc.) may be attached directly to the NoC and 

are thus universally reachable and can be accessed as a shared resource. In this 

way, the proposed architecture allows finding balanced solutions between locally 

shared and globally shared resources. The authors claim C-language 

programmability for the embedded processors and an architecture that may be 

programmed either as a functional pipeline or as run-to-completion cluster. 

Benchmarking results are presented for a simple TCP/UDP integrity check and 

forwarding application. Results from an FPGA-prototype implementation with only 

two processor clusters (total of eight cores) and two NoC switches are also 

extrapolated for an ASIC implementation with 20 clusters (total of 80 cores). The 

ASIC implementation would consume the same die area as current state-of-the-art 

desktop processors. The GigaNetIC is shown to have a forwarding performance 

which is roughly one order of magnitude greater than that of the general-purpose 

CPU, but it consumes about two orders of magnitude less energy. However, the 

authors give no comparisons to commercial NP implementations. 

In 2006, researchers from Hitachi present investigations on a cache-based network 

processor architecture ([34]). A conventional NP cluster with parallel/pipelined 

processors is augmented with a hardware pipeline that provides pre- and post-

processing capabilities and the cache system. The first packet of each packet 
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stream/burst is forwarded to the processor cluster, where the traditional forwarding 

function is implemented in software. After processing, all relevant information (i.e. 

flow identification and all types of packet manipulations / data) are recorded in the 

cache system. When a subsequent packet of the same flow arrives, this information 

is retrieved from the cache and may be applied on the packet in the post-processing 

stage. Measurement results performed on an FPGA prototype with real world 

Internet traffic revealed, that between 10% and 40% of the total processor cluster 

performance is sufficient to forward 100% of incoming traffic. In turn, the authors 

argue that a traditional 10 Gbps to 40 Gbps NP device augmented with their cache 

implementation would be able to process a 100 Gbps link in a lossless fashion. 

Such an implementation would in turn only consume about 45% of the power 

needed in comparison to a conventional NP that is scaled up to 100 Gbps 

performance. 

In 2007, Li et.al. from the National University of Defense Technology in China 

proposed the DynaNP architecture ([35]). A DynaNP consists of a set of processors 

that are connected over a central interconnect to shared memory and ingress / 

egress management engines (IME, EME), which perform a DMA function to and from 

the shared buffer and initial packet pre-classification. The networking application is 

partitioned into tasks, which are subsequently assigned to run on distinct 

processors. Depending on the type of arriving packet, processing may be achieved 

by executing a variable number of tasks. The initial packet classification in the IME 

determines the first task to be executed for the incoming packet and subsequently 

assigns it to the queue of the respective processor. After processing each task, the 

processor decides whether further steps are necessary (sending it on to another 

processor) or back to the EME for retransmission over the link or fabric interfaces. 

As an initial partitioning and mapping of the total task set among the available 

processors will not be optimally balanced, and the utilization of individual 

processors is also expected to change with variable traffic loads, the authors 

propose a dynamic task migration algorithm, with which they essentially perform 

load balancing of the tasks among the processor cluster. The publication presents 

system-level simulation results of the proposed DynaNP architecture. However, the 

elaboration lacks a prototypic implementation and the authors do not comment 

about the overhead associated with frequent task migrations and how to insure 

packet ordering when reconfiguring the processing paths. 
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2.1.3. Conclusions 

The characteristics of the first and second generation of NPs form the basis, from 

which the FlexPath NP architecture [7] was initially defined: 

– A number of different companies have developed NPs for different market 

segments with quite different architectural approaches and processing resources. 

– All regarded NPs combine programmable resources with hardware accelerators 

for compute-intensive and networking-specific tasks. Most NPs also include line 

and fabric interfaces and memory controllers for off-chip packet storage. Control 

Plane functions, which are not performance-critical are usually mapped to a 

general-purpose RISC processor. For the packet processing task, RISC 

processors, some of them with application specific instruction set extensions, 

DSPs, or traditional ASIP designs are used. 

– While there are also some multi-chip solutions, most designs favor integration into 

a single chip design. 

– Due to the performance requirements of network processing, multi-threading and 

parallel processing are widely used. Multi-threading allows hiding long memory or 

hardware accelerator access latencies, as the programmable core can continue 

working on other packets being processed in different threads. As far as operation 

models are concerned, processors may be used in a symmetric multi-processor 

cluster (run-to-completion architecture), a dedicated processor pipeline, or a 

combination of both (parallel pipelines). Figure 4 illustrates these three 

architectural approaches in an abstracted form. 
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Figure 4: Fundamental NP Architectures: run-to-completion parallel processor cluster 

(a), simple processor pipeline (b), and parallel processor pipelines (c) 
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More recent developments in the commercial NP field can later be used to analyze 

the industrial relevance of the proposals made in the FlexPath NP approach. The 

following conclusions about commercial network processor architectures may be 

drawn with respect to the subsequent features: 

– Programmability: Programming network processors is still an important 

challenge for some devices. As far as the data plane processors consist of cores 

with packet processing specific instruction sets, no standard compiler tool chain 

may be available. Consequently, those cores have to be programmed in their own 

assembly language, which can become quite awkward. Big vendors, such as Intel 

have therefore provided software libraries that include optimized code for a big 

variety of commonly needed protocols. However, the possibility of simply and 

efficiently upgrading an NP-based system in the field with new software patches 

for new protocols is somewhat limited. In contrast, some vendors resort to 

standard embedded cores that are programmable in C, like Cisco's QFP or the 

MIPS core used in the Cavium Octeon II. As integration density has improved 

largely, it is now possible to trade off the comfort of C programming on a few 

more standard embedded RISC cores versus fewer processors featuring an 

application-optimized instruction set. Another programmability aspect can be 

found when comparing the run-to-completion solutions with the pipelined 

architectures. Pipelined architectures have the inherent advantage of a 

deterministic behavior, and thus a fixed maximum packet rate. The fixed packet 

rate is helpful when a manufacturer guarantees operation of his device for a given 

speed rate, as a worst case scenario with a continuous stream of shortest size 

packets leads to a fixed packet rate for any given line speed. On the other hand, 

this guarantee comes at the price of having to partition the application into chunks 

that can be executed within the individual pipeline stages in the mandated time. 

Also, when there are only limited access points to external accelerators and 

memories, this restricts the freedom of software programmable solutions. 

– Interconnect: As NP manufacturers have scaled up the number of processor 

cores in run-to-completion architectures, traditional on-chip buses have become 

a system bottleneck. Therefore, a migration to more sophisticated structures such 

as crossbar switches were necessary in order to fully exploit the processing 

performance of the larger processor clusters. In contrast, pipelined architectures 

may be implemented easily, as they require only simple point-to-point 

connections between neighboring processing elements. In addition to the 

guaranteed throughput that pipelined architectures can offer, this explains, why 

NPs targeting the highest speed market segment still adhere to the pipeline 

model. 

– Processors: Current packet processors are predominantly RISC processors, 

some of them with a customized instruction set. Other processor types such as 
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the MSP5000 from Brecis Communications [11] with DSPs or VLIW processors 

(Agere, [10]) are no longer found in current designs. Specific high-performance 

tasks are still solved by means of hardware support, and not mapped to software 

programmable units. However, there is a strong trend towards multi- and even 

manycore processors, and multi-threading is used extensively in order to hide 

accelerator and memory access latencies. As packet processing usually treats the 

packets as independent units, packet processing can be far easier parallelized 

than traditional general-purpose compute applications. The advances made in 

modern CMOS process technologies helped increase the clock frequencies of the 

processors from a few hundred MHz in the early NP designs to well above the 

GHz margin. 

– Hardware Acceleration: For compute-intensive tasks in packet processing, such 

as CRC checksum calculations or IPsec cryptographic algorithms, only hardwired 

logic is able to deliver real-time performance for current link rates. But also other 

fixed and standard tasks such as queuing and DMA that have to be performed for 

every packet are often offloaded to dedicated hardware units. In total, one can 

observe that both the variety and number of instantiated accelerators has been 

increased in parallel with the number of processor cores and the cumulated line 

rates on current router blades. 

– Integration: The shrinking process technologies not only allow scaling chips 

towards containing even more processor cores and dedicated hardware units. 

Integrating as much functions as possible into a single chip design also helps to 

significantly reduce design complexity and cost and it increases reliability. 

Complex and expensive interconnects across printed circuit boards can be saved, 

if it is possible to integrate the entire processing chain from the MAC interfaces 

and the actual processor complex towards the switch fabric interface and 

memory controllers into a single chip. These single chip NPs are currently 

standard, except for the most processing intensive solutions for the highest 

possible speed grades (e.g. Cisco's ASR 1000 router, which provides deep 

packet processing performance in the multi-Gigabit domain). 

– Specialization: While initial NP design proposals tried to address the problem of 

network processing with a full breadth approach, recent developments show a 

strong differentiation of the devices that target individual market segments. 

Devices for high-speed switching and routing in backbone networks are typically 

addressed with high-performance pipelined processors and hardware support for 

lookups, CRC calculations and traffic management. The processor architecture 

can be optimized to efficiently execute the functions on Layers 2 to 3 of the OSI 

stack, and don't have to provide as much general purpose processing power as 

for application layer or deep packet processing. In contrast, the parallel processor 

architecture NPs are more ideally suited for edge and access network 
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deployments, where the individual line rates may be slower than in the aggregated 

network core, but access control, intrusion detection, QoS policing, etc. have to 

be performed on the incoming packets. These deep packet processing 

applications, which may work on the higher protocol layers or even parts of the 

packet payload in addition to the pure L2/L3 forwarding can be better achieved 

with a more general-purpose processor and a single-threaded, run-to-completion 

processing model. Traditional router deployments in central office environment 

are typically implemented using rack-mounted systems with the possibility of 

scaling the performance by adding additional line cards or switching fabrics as 

needed. In contrast, smaller form factors with the NP as SoC solution and only 

few peripherals on a single PCB are available for mobile network base stations or 

customer premises equipment. The employed NPs need less processing 

performance and come with less cores and lower operating frequency to provide 

more power efficient systems. 

Regarding academic network processor concepts, ideas from the following research 

areas have been investigated by the research community: 

– Reconfigurable computing: several projects ([27], [31], [32]) have used the 

reconfigurability of FPGA devices in order to adapt an NP during runtime to 

changing conditions in the incoming traffic. In addition, by making use of 

reconfiguration, the functions implemented in the device may be almost as easily 

changed as in a conventional software system, but the performance of FPGA 

hardware accelerators is more similar to that of ASICs. 

– Hardware offload: The PRO3 project [29] demonstrated the benefits of assisting 

general-purpose processors with networking-specific configurable hardware. A 

more radical kind of offload is proposed by Hitachi [34], where a full packet 

forwarding path is implemented in hardware that is controlled by the contents of 

the packet processing cache. 

– Interconnect: The GigaNetIC project [33] pointed out an architecture that is well 

suited for scaling to much larger numbers of programmable resources. As 

commercial manycore NP designs moved away from shared bus architectures 

towards crossbar switches and processor pipelines, the GigaNetIC proposes a 

network-on-chip (NoC) based design. 
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2.2. Networking Applications 

2.2.1. IP Forwarding 

The traditional task of routers is forwarding of IP packets towards their final 

destination. The associated tasks are defined in RFC 1812 [2] for IP version 4, which 

is still the dominant IP version today. After packet reception, the link layer 

information of the packet is discarded. Next, the router has to validate the IP header, 

which includes checking the IP checksum and the time-to-live field in the packet 

header. If the packet is valid, the IP destination address is used together with the 

routing table information to determine the output interface onto which the packet 

has to be forwarded. The CIDR addressing scheme [36], which is currently used for 

IPv4 mandates a longest prefix match of the destination address versus the prefixes 

stored in the routing table. Finally, the time-to-live field has to be decremented by at 

least one and the IP checksum must be re-calculated. After that a new link layer 

header may be appended to the packet and the packet can be placed into the 

output queue associated with the determined physical output port. In this best effort 

scenario, all IP packets are treated with equal priority, such that no QoS guarantees 

will be given by the network. 

2.2.2. QoS Mechanisms 

With the introduction of multimedia applications over the Internet, the traditional 

best effort forwarding model of the Internet has proven to be insufficient. Two 

alternative architectures have been proposed to allow service differentiation in the 

Internet and give priority to certain packets over others. 

In the IntServ model [37] proposed in 1994, hosts or routers can establish virtual 

connections with certain associated performance guarantees. If the routers along 

the connection have sufficient resources available, the virtual connection is 

accepted and packets of this connection are treated separately from the other 

traffic. This separation requires some kind of input filtering or access control and 

metering whether the traffic does not exceed the predefined service parameters 

such as a bandwidth limit. In addition, the router must provide different queues and 

a scheduling mechanism that insures proper multiplexing before the output 

interfaces. Due to the requirement of establishing virtual connections and having to 

classify each incoming packet against the full set of connections, this approach is 

not scalable to a large number of users and is therefore only rarely used. 

In contrast, the DiffServ architecture [3] proposed in 1998 uses the old type-of-

service field in the IP header as DiffServ codepoint (DSCP) to indicate that a packet 

belongs to a certain predefined traffic class. The network operator associates a 

certain per-hop-behavior with each DSCP, which may include parameters such as 

maximum allowable bandwidth, forwarding and queuing priority, etc. The individual 
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packets have to be marked with valid DSCP values either by the end hosts (if they 

know about the network operators' traffic classes), or by the border routers sitting at 

the edge of the DiffServ network. For the routers within the network there is the big 

advantage that no state information has to be maintained. The forwarding function is 

simply inspecting the DSCP field when determining the processing priorities or 

queuing priorities. Thus, a full classification and policing of the individual packets 

only happens once at the network edge. Within the DiffServ network the DSCP value 

determines the forwarding behavior, which is typically limited to around ten different 

classes [38]. Therefore DiffServ scales far better and may be easier implemented 

compared to IntServ. The concept of marking individual packets with short QoS 

identifiers has been considered successful enough, so that the same concept is now 

also implemented in the most recent carrier grade Ethernet standards (see chapter 

2.2.6). 

2.2.3. Security Applications 

As the Internet evolved from a pure academic research network towards a 

ubiquitous communication network, transmission of sensitive information (like trade 

secrets, financial information, etc.) caused serious security and privacy concerns. In 

order to tackle these challenges, authentication and encryption technologies had to 

be provided. The IPsec framework [39], which became initially standardized along 

with IPv6 in 1998, provides those services for both IPv6 and IPv4. The IPsec 

framework consists of the two data plane protocols encapsulating security payload 

(ESP) and authentication header (AH).  

The AH protocol only assures that a packet comes from the claimed sender, and 

that the packet did not get modified en route to the receiver. This is achieved by 

applying cryptographic operations on the header and by calculating a cryptographic 

checksum over the payload. However, the payload itself is not encrypted, and can 

therefore be read by anyone tapping into the communication path.  

The ESP protocol encrypts the payload, i.e. the original content of the packet is no 

longer legible for others between the two IPsec endpoints. Standards-conforming 

implementations (current RFC from 2005) have to support AES and 3DES algorithms 

for encryption of the payloads and HMAC-SHA1 as cryptographic checksum.  

IPsec implementations make use of two databases: 

– Security Policy Database (SPD): The SPD contains entries of connection 

endpoints and the action, which should be applied to packets between those 

endpoints. Possible actions are Discard, Bypass (IPsec processing) and Protect 

(en- / decrypt). The router effectively has to perform firewall filtering for the entire 

traffic, when it matches the incoming packets to the connections listed in the 

SPD. 
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– Security Association Database (SAD): The SAD contains the negotiated security 

associations (i.e. cryptographic keys, algorithm, etc.) for each (simplex) 

connection between two endpoints. It needs to be consulted when the SPD query 

results in "Protect" and an actual IPsec operation has to be performed on the 

packet. 

IPsec can be deployed both in the network devices as well as at hosts (i.e. 

computers). If two hosts protect their communication with IPsec protocols, the 

routers in the network simply forward those packets, so there are no extra 

requirements for the NPs in those systems. The more interesting case for the 

network infrastructure happens, when IPsec protocols are used to establish a 

secure connection between two sites that are connected over the public Internet 

(Figure 5). Here, the hosts within the corporate networks (NW1 and NW2) can trust 

each other and don't have to encrypt their messages. However, as people from one 

site need to communicate with people from the other site, packets are encrypted by 

a virtual private network (VPN) gateway router before being released into the public 

network. Routers in the Internet can only read the outer packet headers going from 

VPN GW NW1 to VPN GW NW2, but cannot gain any information about the actual 

communication partners or the contents of the communication. 

Corporate

NW 2

Corporate

NW 1

VPN

GW

VPN

GW

Internet

IPsec Tunnel

 

Figure 5: Confidential Data Transmission with IPsec Tunnel 

Depending on the communication bandwidth between the two sites, en- and 

decryption of the aggregate traffic between the two sites may represent a significant 

processing burden for the gateway routers, which may not be handled by software 

processing alone, but is often handled by hardware accelerators (see also the 

Netronome NFP3200 [21] or SafeNet EIP-196 [19]). 

Another application that uses cryptography is the domain of wireless LANs (WLAN). 

Due to the open nature of the wireless radio link in contrast to wireline links, all 

communications between the end user device and the WLAN hot spot can be 
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overheard by anyone without the use of cryptographic methods. Therefore the IEEE 

WLAN standards have published schemes like wired equivalent privacy (WEP) or 

Wi-Fi Protected Access (WPA) to better protect wireless networks from attacks. For 

the same security concerns, the digital radio channels of both GSM and UMTS 

mobile communication systems feature encryption technology in order to insure 

confidentiality of the transported information. 

2.2.4. Multimedia Applications 

With the increasing availability of high-bandwidth packet data networks, 

transmission of voice and video data over Internet networks became feasible. The 

fact, that transmission via packet switched networks is offered for a lower price 

together with potential cost savings by consolidating voice and data traffic into a 

single network infrastructure posed another incentive for companies to push for a 

converged network. In 2003, the IETF released two standards that describe the 

RTP/RTCP [40] protocols and mappings for voice and video data into RTP streams 

[41] to allow for transmission of voice and video streams over classical IP networks. 

RTP is typically used on top of UDP to provide sequence numbers and time stamps 

for the otherwise unprotected datagram delivery protocol. Transmission of real-time 

data using the TCP protocol that already insures correct packet sequence at Layer 4 

is not advisable, as the delays caused by the TCP protocol e.g. in case of packet 

loss or reordering is not acceptable for interactive communication. However, the 

RTP/RTCP protocols alone are not sufficient to implement a voice-over-IP (VoIP) 

system [42], as it contains no signaling protocol. For this purpose, protocols like 

session initiation protocol (SIP) [43], [44] or H.323 have to be used. These protocols 

negotiate the call parameters between two or more endpoints (e.g. used codec, port 

numbers for RTP and RTCP connection for both directions, bandwidth reservations, 

etc.) before the actual RTP connection can be established to transport the digitized 

voice samples in an appropriate format (see Figure 6). Apart from the 

communication via SIP/RTP protocols, commercial VoIP providers like, for example, 

Skype have also developed their own, proprietary protocols to achieve IP-based 

telephony services. 
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Figure 6: Simplified Connection Setup and Protocol Stack for VoIP 

When transmitting voice calls over the Internet, the digitized voice samples are 

coded using one of the traditional telephone standards, like G.711 (ISDN), G.726 

(ADPCM) or the GSM voice codec. Depending on certain connection parameters, a 

packetization interval is chosen, from which all coded samples are assembled into a 

single RTP packet payload. At the receiving end, the voice samples are retrieved 

and stored for a predefined period to compensate for possible packet reorderings or 

transmission jitter. However, a maximum transmission delay of more than 150 ms 

may already cause a significant deterioration of the user's quality of experience. The 

RTCP connection that is established along with the RTP flow constantly monitors 

the connection quality, and may trigger a change of important parameters like the 

used codec or the packetization interval to minimize negative effects for the users. 

In general, it is important for VoIP applications that there is little or no packet loss 

and packet reordering, and a low end-to-end latency. This can generally not be 

guaranteed by the traditional best effort forwarding of UDP packets in the Internet. 

Consequently, network providers willing to promote use of VoIP services over the 

Internet have to undertake certain measures to prioritize such traffic over other 

flows. The DiffServ architecture referenced in section 2.2.2, in combination with call 

acceptance policies (RSVP, SIP), can be an adequate means to insure a timely and 

reliable delivery of VoIP traffic over a packet switched network. However, there are 
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two main challenges to effectively implement the required QoS on an end-to-end 

communication path: 

– The RTP connections use dynamically assigned (i.e. random) UDP port numbers 

that are negotiated during the connection setup phase by one of the established 

signaling protocols. If the ISP is not able to wiretap the call setup traffic, it will 

later not be able to differentiate between the corresponding RTP packets and any 

other (possibly low priority) UDP traffic. 

– Even if the provider knows about the negotiated connection parameters and 

assigns the traffic to a high-priority DiffServ traffic class, the set DSCP value might 

not be regarded by other ISPs, when the packets are delivered outside the original 

service provider's network. 

For video applications transmitting over the Internet the situation is similar to that of 

VoIP. If it is only a unidirectional connection (like e.g. viewing a video on YouTube or 

watching a TV program online), it is possible to provide larger intermediate buffers 

on the receiver side in order to compensate for reordered packets and packet jitter. 

If the video belongs to an interactive videoconferencing session, the same delay 

considerations as for VoIP hold. Of course, the required bandwidth to deliver video 

in an acceptable quality for the end user is significantly higher than that of pure 

voice transmission. 

2.2.5. Mobile Networks 

The following section, which summarizes some of the findings in [45], gives a short 

introduction to the network backbone in mobile data networks. The following parts 

will focus on the data plane network topology and protocol stacks, as this is most 

relevant for FlexPath applicability in chapter 3. Further details about GSM and 

UMTS network architecture and network elements are found in [45]. 

2.2.5.1. UMTS-PS Network Topology 

Although explicit data about real network topologies is not publicly available, some 

conclusions may be drawn from the physical layer dimensioning of the individual 

links in the system and analyses in [46] and [47]. 



Chapter 2 - State of the Art 

  43 

GGSN: Gateway GPRS Support Node

SGSN: Serving GPRS Support Node

RNC: Radio Network Controller

RNS: Radio Network Subsystem

NodeB: Base Station

UE: User Equipment (Mobile Terminal)

RNC

RNC
RNC

SGSNSGSN

GGSN

RNS

NodeB

RNC

Voice & Data over ATM/AAL2

on T1/E1, T3/E3 TDM links

or even 1 Gb Ethernet

GTP over UDP/IPv4 over ATM

on STM-1 (OC-3)/STM-4(OC-12) SDH links

or 1 Gb Ethernet

IPv4 over high speed link

e.g. OC-192, OC-768

UE

GTP over UDP/IPv4 over ATM

on STM-16 (OC-48)/STM-64(OC-192) SDH links

Internet

GGSN: Gateway GPRS Support Node

SGSN: Serving GPRS Support Node

RNC: Radio Network Controller

RNS: Radio Network Subsystem

NodeB: Base Station

UE: User Equipment (Mobile Terminal)

RNC

RNC
RNC

SGSNSGSN

GGSN

RNS

NodeB

RNC

Voice & Data over ATM/AAL2

on T1/E1, T3/E3 TDM links

or even 1 Gb Ethernet

GTP over UDP/IPv4 over ATM

on STM-1 (OC-3)/STM-4(OC-12) SDH links

or 1 Gb Ethernet

IPv4 over high speed link

e.g. OC-192, OC-768

UEUE

GTP over UDP/IPv4 over ATM

on STM-16 (OC-48)/STM-64(OC-192) SDH links

Internet

 

Figure 7: Exemplary Network Topology of a UMTS Packet Domain Network 

Figure 7 illustrates an extrapolated snapshot from the PS (packet switched) domain 

of UMTS. As the link speeds of the node interconnects increase on each level of 

hierarchy from the base stations towards the core network elements, aggregation 

factors for each hierarchy level can be estimated. Assuming a peak data rate of 2 

Mbit/s per radio cell and a base station serving three cells (120° sector antennas), an 

individual NodeB would carry up to 6 Mbit/s of traffic. Newer modulation schemes 

as found in HSDPA and HSUPA would raise the figures into the order of 3×20 

Mbit/s=60 Mbit/s.  

Table 1: UMTS Backbone Aggregation Factors 

Link Interconnect 

Standard 

Aggregation 

(cells) 

Aggregation (from lower 

hierarchy) 

Radio Cell 2 Mbps radio 1 n/a 

NodeB-RNC E1/STM-0 1/25 1 to 25 

RNC-SGSN STM-1/STM-4 75/300 3 to 12 

SGSN-GGSN STM-16/STM-64 1,200/5,000 4 to 64 

GGSN-External STM-64/STM-256 5,000/20,000 1 to 16 

 

Table 1 lists typical interconnect technologies on the different links and extracts the 

resulting aggregation factors for each hierarchy level based on 2 Mbit/s traffic per 

cell. 

The RNC is responsible for many control plane tasks for the attached NodeBs. 

These functions are typically mapped to software and are hardly suitable for 

hardware acceleration. While the traffic to and from the locally attached NodeBs is 
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less than 51 Mbit/s (STM-0 rate) and the RNCs are connected with peering links 

among each other and towards the SGSN with STM-1 or STM-4 links, an 

aggregation factor of 3 to 12 may be derived, i.e. up to 12 RNC devices can be 

chained towards a single SGSN interface. Using the same method, it can be 

assumed that up to 64 SGSNs are linked towards a GGSN, where an additional 

traffic aggregation can be observed towards the external network links. 

2.2.5.2. UMTS-PS Data Plane Protocol Stacks 
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Figure 8: Data Plane Protocol Stacks of UMTS/GPRS with ATM and All-IP Backbone 

Figure 8 shows the data plane protocol stacks for UMTS/GPRS with both ATM and 

IP as networking protocols. The original version of the UMTS standard is based on 

ATM, with AAL2 and AAL5 used to support both voice and data traffic in a unified 

network architecture. The QoS behavior of ATM with its virtual circuit connections 

makes this solution also interesting from a network management point of view. In 

the all-IP network, which is currently proposed, additional measures beyond IP are 

necessary to avoid interference between real-time and non-real-time traffic classes 

(see also 2.2.2, 2.2.4). It can be seen that the data plane functionality of the SGSN is 

quite simple as no protocol conversions are performed at this unit. All other network 

elements have to perform protocol conversions (gateway functions, cf. red arrows in 

Figure 8) for all traffic that is forwarded towards another hierarchy element. 
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2.2.6. Carrier-grade Ethernet and Internet Backbone Evolution 

Originally, Ethernet was developed during the 1970s and first standardized by the 

IEEE in the 802.3 standard in 1983. It had been developed as a local area 

networking technology, used to connect computers and servers within the same 

building. Over the course of the years, Ethernet became the dominant LAN 

technology and continuous development efforts increased the transmission 

bandwidth from the original 10 Mbit/s to 10 Gbit/s. As of 2009, standardization work 

has begun defining a 100 Gbit/s standard.  

Initially evolving from traditional long-distance telephony networks as only wide area 

networks, data network standards such as ATM, MPLS and Sonet/SDH were 

developed as transport architectures for packet traffic based on optical fiber 

technology with data rates between 155 Mbit/s (STM-1) and 39.8 Gbit/s (STM-256). 

These technologies were designed for supporting both digital voice and packet-

based data communication over a shared infrastructure and included very efficient 

QoS methods and fault-tolerant redundant transmission necessary for high-

availability. Due to the relatively few systems needed for the backbone 

infrastructure, these systems are significantly more expensive than Ethernet 

technology deployed in the LAN field. While the transmission speed of the classical 

backbone technologies was initially much larger than in the LAN technology in use 

at the same time, this is no longer true considering the most recent advances in the 

Ethernet standardization bodies. 

As virtually all traffic in the Internet somehow emerges from and is destined for local 

area networks (both for residential customers, who typically maintain a small LAN 

behind their DSL-Router or cable modems, as well as content providers with their 

private enterprise networks) and taking into account the effort necessary on the ISP 

side to translate between the different transmission standards, it is increasingly 

attractive to transform the Internet backbone into an Ethernet-based network. In 

addition, operators can hope to make use of the better economies of scale, when 

migrating towards the higher-volume Ethernet infrastructure ([5], [48]).  

However, traditional Ethernet as it was intended for LAN use, has serious scaling 

issues and does not implement the QoS and fault-tolerance mechanisms found in 

current backbone networks. Recent efforts in the IEEE 802 standards committee 

have added VLAN tagging with QoS marking (IEEE 802.1Q, IEEE 802.1p) in a similar 

fashion as the DSCP codepoints found in DiffServ-enabled IP networks (see 2.2.2). 

The concept of VLANs allows to provision logically separate networks over the same 

physical medium. In order to address the scaling limitations of traditional Ethernet (it 

is practically infeasible to maintain lookup tables with millions of 48-bit MAC 

addresses, which are globally unique, but not in any form structured in accordance 

with the network topology), traffic between a pair of networks or network access 
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points may be aggregated into distinct VLANs. As the VLAN tags only support just 

over four thousand such VLANs, provider backbone bridging (PBB, IEEE 802.1ad) 

allows to build a stack of VLAN tags at the start of the Ethernet frame that allows 

constructing a hierarchy of VLANs in order to transport aggregated flows from the 

access network through the aggregation network towards the packet core (see also 

[48], [49] and Figure 1 in chapter 1). 

Although it could be argued that these latest developments may ultimately lead to a 

network architecture that would be fully implemented using Ethernet, carrier 

Ethernet and IP technologies; the large installed base of non-Ethernet ("legacy") 

networks enforces a gradual transition, where newly constructed or recently 

upgraded networks may be using the latest technology, but the installed base with 

its variety of technologies ranging from ATM over Sonet/SDH to MPLS will remain in 

use for the remainder of that equipment's lifetime. Consequently, there will be a 

continued need for gateway devices that are able to translate between these 

different protocols at the edges of the individual networks, in order to insure full 

connectivity and interoperability. 

2.2.7. Conclusions 

The various examples for networking applications discussed before can be 

categorized into two different groups with respect to the interdependence between 

individual packets: 

– Stateless Networking Applications: simple IP forwarding and layer 2 switching 

are representatives of the stateless networking applications. In these applications, 

the packets can be processed individually, i.e. processing of a later packet can be 

achieved independently of the processing of earlier packets. This independence 

can be exploited very well by NP architectures with many parallel processing 

units, as the task of processing multiple packets can be parallelized in a 

straightforward fashion. In addition to plain forwarding and switching, DiffServ 

forwarding with different QoS priorities for various traffic classes can be regarded 

as a stateless networking application. 

– Stateful Networking Applications: In contrast, when the forwarding function is 

appended with flow-specific information like (1) the traffic parameters in an 

IntServ environment, (2) connection-specific sequence numbers used for IPsec or 

(3) forwarding is based on higher layer connection information found in gateway 

functions, the networking application relies on some kind of state information. An 

important aspect is that the state information must be updated after processing a 

packet and the processing of the subsequent packet relies on the results 

triggered by previous packets from the same connection. When mapping such 

stateful applications on parallel processing units, caution has to be exercised in 
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order to insure both the consistency of the state information and the correct 

processing sequence of the individual packets from each different flow. 

But the regarded networking applications may also be classified according to the 

individual processing requirements within the network-internal nodes and with 

respect to their feasibility for hardware support:  

– IP forwarding can be accomplished with a few relatively simple operations. These 

can be accomplished in an optimized way either by using processors with 

customized instruction sets or dedicated hardware accelerators with limited 

configurability. Cryptographic algorithms also have a regular structure, but are 

very computationally expensive. For this reason, the en- or decryption is usually 

transferred to hardware accelerators, if a significant share of the traffic has to be 

protected.  

– However, control and management of the state information (SPD and SAD 

databases) require general-purpose calculations, which are usually not moved to 

dedicated hardware. Changes in the operational details of the protocols, e.g. 

improved key exchange protocols, also require an architecture that can be easily 

adapted in the field. The same is also true for the interworking functions in 

gateway devices or deep packet processing applications like virus scanning or 

intrusion detection, where entire protocol stacks including layers 4 and higher 

have to be processed. 

The latter classification of networking application characteristics is already reflected 

in the offered mix of programmable units and customized hardware in current 

commercial NP designs (see chapter 2.1). The FlexPath NP architecture, which will 

be presented in chapter 3, optimizes the performance by providing different 

processing paths (i.e. software / hardware unit traversal sequences) that are best 

suited for the different traffic types. Application classes of the arriving packets have 

to be identified, and then the packets can be dispatched to the best fitting 

processing path. In addition, by differentiating stateful and stateless applications, it 

is possible to apply a combination of load balancing techniques, which are well 

suited for either case. 
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2.3. Packet Classification 

Packet classification is a necessary task in all current network processing devices 

and has to be executed in various fashions depending on the application 

requirements. Packet classification algorithms can be classified into:  

– Single-field classification: a decision on the further processing of a packet 

depends only on a single header field. This is for example the case for simple 

routing lookups, which rely only on the IP destination address field. QoS-aware 

forwarding within a DiffServ domain, where the DSCP field in the IP header 

determines the service class of the packet is also a single-field classification 

problem. State-of-the-art techniques for single field classification, many of which 

are also used as components in multi-field classification algorithms, are presented 

in section 2.3.1. 

– Multi-field classification: More complex applications like access control / 

firewalls, flow specific processing, etc. base the action on multiple header fields. 

The most important example is the Internet five-tuple, which consists of the IP 

source and destination addresses, layer four protocol and layer four source and 

destination port numbers. The Internet five-tuple is generally conceived to 

unambiguously describe an individual flow (i.e. connection) between any two 

parties. State-of-the-art techniques for multi-field classification algorithms are 

later described in section 2.3.2. 

As I will show later in chapters 3.2 and 4, the Path Dispatcher, which determines the 

best suitable processing path of the arriving packets, contains a reconfigurable rule 

base that effectively performs a multi-field packet classification. The heterogeneous 

decision graph algorithm (HDGA) proposed later in chapter 4, is based on some 

ideas of existing classification schemes and optimizes them for the specific 

environment faced in the FlexPath Path Dispatcher. 

2.3.1. Single-Field Classification 

The simplest form of classification is based on only one field. A practical example of 

such a single-field classification is the routing lookup, where packets at the router 

have to be classified according to their IP destination address. The extracted 

address has to be matched to the entries in the routing table, and the packet is 

forwarded to the interface stored next to the matching address entry. In case of the 

IP next-hop lookup, the entries of the routing table can be either fully specified IP 

addresses, or address prefixes. The packet then has to be forwarded to the 

interface associated with the longest matching prefix, i.e. the prefix with the highest 

number of corresponding bits. The following subchapters present some basic 

search techniques that are used to find entries corresponding to a given search key. 
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2.3.1.1. Linear Search 

The most basic search mechanism is linear or sequential search ([50], chapter 6.1, 

pp. 396 ff.). At first, the keys of the database are stored in a list. When the search 

commences, the list is checked from the beginning until the key corresponding to 

the searched item is found. If the searched string is not in the list, the search is 

unsuccessful. The average search time for a list with N entries is 
2

1N , if all entries 

are sought with equal probability. Thus the search complexity is O(N). Considering 

the example database of Table 2, we observe an average search time of 5.5 cycles. 

Table 2: Linear Search Table for Example Database 

Entry Value (Key) Key in binary format 

1 67 100 0011 

2 27 001 1011 

3 56 011 1000 

4 32 010 0000 

5 75 100 1011 

6 29 001 1101 

7 50 011 0010 

8 39 010 0111 

9 10 000 1010 

10 84 101 0100 

 

Due to the search complexity of O(N), it is apparent that linear search does not scale 

well for larger tables. However, the basic scheme can be used with any list of 

elements that do not have to be sorted in any kind. Therefore, linear search can be 

beneficial especially in cases, where it is hard to establish an ordered list, e.g. by 

frequently updating the entries in the table. 

The search performance can be improved, if linear search can be applied to an 

ordered list, where there are basically two possibilities. If the list is ordered by the 

numerical order of its elements, the search can be stopped when the first value 

greater (or less) than the requested key is found. Therefore, searching for an element 

that is not contained in the list is accelerated. The second optimization would be to 

sort the elements in descending order with respect to the search frequencies. In this 

way, keys that are searched more often are situated at the beginning of the list and 

are in consequence found earlier. In case the frequency is not known beforehand, 

there are also adaptive schemes proposed, which update the sequence of the list 

during the search operations, so that the list is self-adapting towards the current 

operational environment. 
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In the networking domain, linear search can often be found as search technique for 

collision resolution in hashing-based searches (see section 2.3.1.4). 

2.3.1.2. Binary Tree Search 

Binary tree search (see [50], chapter 6.2.2, pp. 426 ff.) requires that the elements of 

the database are sortable into order. Starting from a selected root element, a tree 

structure is generated with two children per node. Elements that are smaller than the 

value stored at the inspected node are stored in the left sub-tree, larger elements in 

the right sub-tree. When a search is initiated, elements are compared starting at the 

root node and if the search string is not found either the right or left sub-tree is 

searched recursively. As the number of elements stored in each level of the tree 

increase by a factor of two for a balanced tree, the search complexity is reduced to 

O(log2N). This reduction in complexity makes binary search a very attractive method 

also for large databases.  

67

27

56

32

75

29 50

39

10 84

50

29 67

27 32 56 75

10 39 84

 

Figure 9: Binary Search Trees for Example Database 

However, if the keys are already in a sorted order when inserting them into the tree, 

a degenerated tree may result that approaches linear search as a worst case. 

Therefore, tree balancing schemes are used in situations, where frequent updates of 

the database occur, in order to obtain a near-optimum performance (see also [50], 

chapter 6.2.3, pp. 458 ff.). 

This problem is illustrated in Figure 9, where the entries of Table 2 are inserted into 

the tree in an unmodified order (left tree). This tree has a maximum depth of 6 nodes 

and requires on average 3.4 cycles to find the searched value. In the right tree, the 

insertion order has been changed such that the maximum tree depth is reduced to 

four levels (   410log
2

 ). The average search time for equally likely values is reduced 

to 2.9 cycles. As N=10 is not a power of two, some nodes at the fourth level are 

unoccupied. 

2.3.1.3. Binary Tries 

A binary trie (derived from the word reTRIEval and pronounced "try"; [50], chapter 

6.3, pp. 492 ff.) looks similar to a binary tree at first. However, instead of storing the 

keys within the nodes along with the two child pointers and comparing the key to 

the searched element, the position in the trie already determines the actual 
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contents. The binary trie treats a number as a string of a certain length. The root 

node contains the empty string. From here, a branching is made recursively with the 

left child appending a '0' to the string and the right child appending a '1'.  
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Figure 10: Binary Trie for Example Database 

Figure 10 shows the binary trie for the same database as presented in Table 2 and 

Figure 9. In order to get the binary trie, we have to convert the keys to their binary 

representation first. The labels within the individual nodes are featured for clarity 

only. The actual trie would only store markers (grayed fields) for the nodes 

representing actual values from the database. White nodes or nodes that are not 

linked within the trie lead to nodes that do not exist in the original database. 

Searching the trie takes seven cycles, as all database entries can be symbolized as 

7 bit numbers. In general, the search time can be expressed as O(w) for any 

database where the largest member can be represented with w bits. 

Binary tries can also be used very efficiently, when the longest matching prefix for a 

given key is sought as this is the case in CIDR routing table lookups (see chapter 

2.2.1). 

An effective variant to reduce both the size and search time complexity for tries has 

been proposed by Morrison [52] with the PATRICIA (PATRICIA is an acronym for 

"Practical Algorithm to Retrieve Information Coded in Alphanumeric") tries. 

PATRICIA is based on a binary trie, but nodes that have only a single child are 

skipped. Instead, the nodes are containing information, at which bit position the 

next test has to be performed. Only the final node contains a copy of the original 

string that has to be compared to the search word in order to verify an actual match. 

Figure 11 shows the PATRICIA trie corresponding to our example. The PATRICIA 

trie has N-1 internal nodes plus N leaves pointing to the keys of the actually stored 

strings. 
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Figure 11: PATRICIA Trie of Example Database 

If a PATRICIA trie is constructed for variable length prefixes of IP addresses, the 

longest matching prefix may be found very effectively as all intermediate prefixes are 

passed on internal nodes during the search operation from the root towards the leaf 

nodes. In addition, new entries may be inserted or deleted from trie data structures 

with little effort, as the structure of the trie is directly related to the contents and no 

complex re-balancing operations have to be performed. 

2.3.1.4. Hash Table Search 

The final search algorithm of the classical single-field searches presented in this 

work is hash table search (see [50], chapter 6.4, pp. 513 ff.). In contrast to the 

previously discussed search techniques, the search is not performed on the keys 

itself, but a hash value h(k) is computed from the key k using the hash function h. An 

important property of hash functions is that the hash value h(k) has fewer bits than 

the original search key k. Basically, any function may be used for hashing, but in 

order to obtain a good search performance, functions with certain mathematical 

properties have to be chosen. 

Hash table searching is intended in areas, where there are far fewer entries in the 

database than the theoretically possible number of entries given the width of the 

search keys. Instead of working on tables or lists with the original length, the hash 

function is used to compress the search space to a significantly smaller space. 

Consider the example database of Table 2 and focus on the binary representation of 

the stored values. We need seven bits to encode the numbers in range smaller than 

100, but we have only 10 entries. We could choose a hash function h(x)=x mod 16, 

effectively regarding only the four least significant bits of every key. Table 3 shows 

the resulting hash table for the example database of Table 2. 

When searching for a specific key, e.g. 39, we first compute the hash function h(39) 

= 39 mod 16 = 7. Now the hash table is inspected at position 7, and the matching 

entry is immediately found. Thus, the search can be completed with a single lookup 

operation (plus the computation of the hash function), which yields an optimal 

search complexity of O(1). However, when searching for the key 75, a different 

behavior can be observed. The index h(75)=11 lists two entries, namely 27 and 75. 
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This effect is called collision and happens, when two different keys from the initial 

database evaluate to the same hash value. As the hash space (in our example 

24=16) is smaller than the number of possible values (100), collisions are 

unavoidable, if the number of entries in the table exceeds the size of the hash 

space. But collisions can also not be excluded if this requirement is fulfilled. The 

amount of collisions happening when the table size is smaller than the hash space 

depends on both the used hash function and the entries of the database. From a 

theoretical point of view there exist "perfect hash functions" that produce collision-

free distributions of the keys. In practice, different classes of hash functions are 

used for general-purpose applications that try to find a suitable compromise 

between computational complexity, balanced distribution of the input values to the 

hash space and applicability for key sets that are unknown during design time. In 

the networking field, cyclic redundancy checks are a popular choice for constructing 

hash tables [51]. 

Table 3: Hash Table for Example Database 

Index Contents 

0000 010 0000; EOL 

0001 EOL 

0010 011 0010; EOL 

0011 100 0011; EOL 

0100 101 0100; EOL 

0101 EOL 

0110 EOL 

0111 010 0111; EOL 

1000 011 1000; EOL 

1001 EOL 

1010 000 1010; EOL 

1011 001 1011; 100 1011; EOL 

1100 EOL 

1101 001 1101; EOL 

1110 EOL 

1111 EOL 

 

When using imperfect hash functions, the hash table lookup algorithm has to 

provide means to tackle collision resolution. One popular and simple method is 

implemented in Table 3: chaining. Colliding entries are stored in a linked list (see 

also 2.3.1.1) under the corresponding index. This list has to be searched 

sequentially during collision resolution and increases the total search time from O(1). 

A worst case upper bound of O(n) would be achieved, if a degenerate database 

contains only colliding entries that all map to the same hash value. However, for real 

world problems with good hash functions, the collision probability is small, so that 
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the actual overhead remains well limited and hash table searches achieve attractive 

performance results. Alternative collision resolution schemes like subsequent hash 

searches, tree structures, etc. exist, but shall not be further discussed within the 

focus of this thesis. 

2.3.1.5. Content Addressable Memories 

In contrast to the algorithmic search techniques presented in the previous 

subchapters, which may be implemented either in software or hardware, content 

addressable memories (CAM) are hardware solutions that are specially designed for 

search problems. They are currently widely employed as standard co-processors in 

commercial solutions for both routing lookup (single-field packet classification) and 

firewall filtering (multi-field packet classification) applications in network search 

engines (NSE) [53], [54]. 

The underlying working principle of CAMs may be understood as that of an inverted 

SRAM memory. In the classical SRAM, memory cells are grouped into words of 

distinct width (e.g. 32/64/256 bits) holding the actual information. The address width 

is derived from the number of words contained in the memory device, e.g. a 4 MB 

memory with 32 bit word width would be 1M words large and is addressed by a 

  201log
2

M  bit address. When the user puts a certain address on the device's 

address bus, the data stored in the corresponding memory cell is retrieved and 

delivered on the device's data bus. 

In a CAM device, the contents of the database are stored in the memory cells during 

the initialization. When the user searches for a specific key in the database, he will 

put the data on the data bus of the device and the CAM performs a parallel 

comparison of the data word to all contents in the memory. If the data is stored in 

the CAM, the address of the corresponding cell is delivered on the address bus and 

may be used to retrieve further associated data that is stored in a traditional 

memory. 

In contrast to simple CAMs, which are based on a single SRAM cell per CAM cell 

and store only the distinct values 0 and 1; ternary CAMs (TCAM) are also available 

that make use of a second SRAM within each CAM cell and allow storing "don't 

care" values. When a search is requested, matches are reported if the '0' and '1' bit 

positions in the database entries and on the data bus correspond, skipping the 

contents in the "don't care" positions. In this fashion, it is easily possible to perform 

searches with wildcard parameters, prefix matches and certain types of range 

matches. The big advantage is that for such entries a single TCAM word is able to 

represent a multitude of exact matching values, which is very space efficient. 

As the matching logic within the CAM/TCAM solutions adds additional overhead 

compared to plain SRAMs, the access times are not that fast and are typically in the 
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range of several tens of ns. A major drawback of TCAMs is the high power 

consumption as all memory cells of a database are activated during a search 

operation.  

2.3.2. Multi-Field Classification 

While searching large databases of only a single packet header field under hard 

real-time conditions on multi-gigabit/s links may already be quite a challenging task, 

the problem gets even harder when several (independent) fields from the packet 

header have to be inspected. All applications that rely on flow identification (e.g. 

firewall filtering, IPsec, etc.) involve identifying the associated information from either 

the Internet five-tuple or a combination of further fields from the packet header.  

Mathematically, the problem of multi-field packet classification on n fields can be 

interpreted as finding the highest-priority rectangle in n-dimensional space, which 

contains the point defined by the packet's header fields [55]. Gupta et.al. show that 

for realistic rule base sizes, the performance bounds of algorithms known from 

computational geometry are infeasible in the networking environment. For rule 

bases with N rules over a d-dimensional space (i.e. d different header fields) the 

bounded complexities are either O(log N) search time with O(Nd) storage or O((log 

N)d-1) search time with O(N) storage space. Therefore, heuristic algorithms that try to 

exploit characteristic features from the application domain have been developed. 

Multi-field packet classification has been established as an industry standard taking 

the structure of Cisco access control lists (ACLs) as a common template [61], [67]. In 

addition to specifying exact match address values or prefixes, the Cisco ACL may 

contain wildcards and range specifications for the port numbers. In realistic rule 

bases, it is also possible that several rules overlap. This effect can also be seen in 

the example rule base shown in Figure 13 in chapter 2.3.2.2, where rules 0 and 5, 2 

and 5, and 3 and 5 partially overlap each other. Therefore, in addition to the rule 

specifications, a priority is assigned with each rule, such that the highest-priority rule 

can be chosen in such cases. This prioritization and the resulting danger of finding 

several matching rules within a given region of packet values further complicate the 

classification problem.  
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The packet classification problem can be formalized in the following way ([55], [58], 

[60], [61]): 

Given are d header fields for each packet P that are relevant in the classification 

problem 

      1,...1,0 dPPP  (2-1) 

The rule base or filter set B of size N is a prioritized list of rules Rp, i.e. the rule index 

p,  1,...,1,0  Np  is also the priority of the rule and each rule consists of d 

expressions E[i] on all possible header fields P[i] 

  
110

,...,,



N

RRRB  (2-2) 

  ]1[],...,1[],0[  dEEER
p  (2-3) 

The following types of expressions are found in most practical rule bases, although 

further expressions with a Boolean result are conceivable: 

– Exact Match: 

 valueiPiE ][:][  (2-4) 

 valueiPiE ][:][  (2-5) 

– Wildcard Match: 

   valuemaskiPiE ][:][  (2-6) 

– Range Match: 

 2][1:][ valueiPvalueiE   (2-7) 

– Prefix Match: 

 prefix
iP

iE
m










2

][
:][  (2-8) 

An incoming packet matches the rules in M with 

   ][given   true,is ][:1,...,0: iPiEdiRRMB
mm

  (2-9) 

and  

  MRihR
ih
 min ;  (2-10) 

is the highest priority matching rule. 
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Table 4: Example Rule Bases B with d=2 and N=7 (a, left) and d=3 and N=7 (b, right) 

    31124,3100
0

 PPR        02,31124,3100
0

 PPPR  

    63132,300
1

 PPR        02,63132,300
1

 PPPR  

    47132,1904
2

 PPR        12,47132,1904
2

 PPPR  

    710,6300
3

 PPR        *2,710,6300
3

 PPPR 1 

    31116,63048
4

 PPR        *2,31116,63048
4

 PPPR  

    3910,1504
5

 PPR        *2,3910,1504
5

 PPPR  

    63132,47024
6

 PPR        02,63132,47024
6

 PPPR  

 

Table 4 introduces two example rule bases with range matches in two dimensions 

and exact/wildcard matches in a third dimension that will be used later to illustrate 

some of the discussed classification algorithms. 

The following chapters present the wide range of state-of-the-art multi-field packet 

classification techniques.  

2.3.2.1. Recursive Flow Classification (RFC) 

Recursive Flow Classification (RFC) has been proposed by Gupta and McKeown in 

1999 [57]. The basic idea behind RFC is to find an efficient mapping from a long key 

(actually the concatenation of all relevant header fields from the current packet) 

towards a short index, which describes the appropriate action. It is practically 

impossible to pre-compute the action for each key and then look up the result in a 

single step, since this would require a memory with 2S entries, where S is the 

concatenated length of all relevant header fields. Therefore, a multi-stage approach 

is chosen. At first, the concatenated header fields are split into several shorter sub-

keys. Each of these keys is used as an address for a memory. The obtained values 

from the first stage are combined and yield the addresses for the memories of the 

subsequent step. In the final step, the action can be calculated by combining the 

lookup results from the last stage. Figure 12 illustrates the working principle of RFC. 

The S=128 concatenated bits from the packet header are reduced to a T=12 bit 

classification result in three phases using a total of 14 memory blocks. 

                                                
1 Wildcard Match P[2]=* may also be expressed as P[2] ^ 0 = 0 in line with the formal 

definition above. The asterisk is a common shorthand notation for wildcards. 

2 These calculations assume transmission of 40-byte and 1500-byte IP datagrams over PoS 

and Ethernet media. Protocol overhead calculations for PoS include SDH overhead, 9 bytes 
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Figure 12: Working Principle of RFC 

In [57], Gupta and McKeown state that they had investigated real-world classifiers 

with 1700 rules in four dimensions and the RFC algorithm supports classification at 

up to 10 Gbit/s line rates. However, both the storage requirements for the rule table 

and pre-processing time (essential for dynamic updates of the memories when the 

rule base changes) grow rapidly for classifiers with more than 6000 rules. In 

addition, the RFC algorithm has no incremental update scheme, i.e. changes in the 

classification rule base may lead to a complete recalculation and reconfiguration of 

the stage memory contents. 

2.3.2.2. HiCuts/HyperCuts 

HiCuts [59] is a decision-tree based classification scheme also proposed by Gupta 

and McKeown in 1999. The HiCuts classification may be explained by approaching 

the packet classification problem from its geometric interpretation. Figure 13 shows 

the two-dimensional rule base of Table 4a in its graphical representation.  
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Figure 13: Graphical Representation of B from Table 4a 

At the root node of the decision tree, the entire d-dimensional space is represented. 

In each node, the d-dimensional space is split up into n equally sized sub-spaces by 

cutting one selected dimension into n equally sized intervals. This process is 

continued iteratively until a pre-defined number of classification rules are remaining 

within the reached sub-space that may be resolved by a final linear search step. 

Figure 14 shows the operation of HiCuts for an arriving packet with values (P[0]=25, 

P[1]=39). 
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Figure 14: HiCuts Tree; at most 2 Rules for Linear Search and 8 Cuts per Tree Node 

Singh et.al. extended the HiCuts algorithm in 2003 by allowing cuts in several 

dimensions to happen within a single node and supply an appropriately updated 

heuristic to generate the resulting tree (Figure 15). Allowing to cut along several 

dimensions instead of sticking with a single dimension in each tree node, reduces 

the resulting decision tree for realistic classification rule bases to fewer levels. In 
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[58], the authors quote that they require 2 to 10 times less storage space for a 

HyperCuts tree compared to HiCuts and the worst case search time is ranging 

between 50% and 500% better than HiCuts. 
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Figure 15: HyperCuts Tree; at most 2 Rules for Linear Search and 8 Cuts per Tree Node 

As both schemes cut the interval of each dimension into equally sized sub-intervals, 

it may take several successive cuts (i.e. tree levels and correspondingly memory 

accesses / search time) in order to resolve exact matches on a specific field. This 

behavior would deteriorate the performance most, if the rule base contained exact 

matches for long header fields, like e.g. the 32 bit IPv4 addresses. Both algorithms 

use the maximum number of cuts allowed to be performed at each node (i.e. 

number of children) and a bucket size for the remaining rules in a specific region as 

tunable parameters during tree construction. By appropriately choosing these 

parameters, search time, search complexity and tree size can be traded against 

each other. HyperCuts additionally allows choosing the maximum number of 

dimensions along which the cuts may be taken at each tree node. 

2.3.2.3. Grid-of-Tries 

The Grid-of-Tries classification algorithm was first described by Srinivasan et.al. in 

1998 [60] and may be applied for two-dimensional classification, especially source-

destination IP address pairs. A first trie is constructed for the destination addresses 

found in the classification rule base. Each of this trie's leaves contains a pointer that 

leads to a source address trie containing all source addresses that share the same 

destination address in the rule base. They state in their publication that although an 

extension of the scheme towards higher dimensions (protocol field and port 

numbers) would be theoretically possible; but the algorithm would not perform well. 

The performance degrades significantly when the rule base includes range 

specifications for the L4 port fields. Therefore, Cross-Producting (see 2.3.2.4) is 

proposed for five-tuple classification. 
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In 2003, Baboescu et.al. [61] revisited the grid-of-tries algorithm and proposed 

some modifications to support realistic five-tuple classification. The adapted 

scheme is called EGT-PC (extended grid-of-tries with path compression). The 

authors investigated several rule bases obtained from Internet Service Providers 

(ISPs) and found out that across all these classifiers not more than 20 rules would 

share the same source / destination address pair. In most cases, there would be 

only between 3 and 5 rules per address pair. Therefore, they propose a two-stage 

classification algorithm that would find all potentially matching source / destination 

address pairs for an incoming packet and then linearly search the list with remaining 

rules. As the address specifications often include prefixes in addition to full 

addresses, a modification in the grid-of-tries structure is necessary in order to cover 

all prefixes without backtracking in the trie. Additionally, they propose to compress 

the source and destination address tries in a similar fashion as in PATRICIA (see 

2.3.1.3). 

In 2006, Pao and Liu [62] presented a further refinement to the EGT-PC scheme that 

makes it better scale for larger classification rule bases and IPv6 addresses. 

2.3.2.4. Bitmap-Intersection and Crossproducting 

Bitmap-intersection and crossproducting are very similar classification schemes that 

have been independently developed and presented at SIGCOMM 1998. 

In bitmap-intersection, proposed by Lakshman and Stiliadis [63], the multi-

dimensional search problem is at first broken up into a set of one-dimensional range 

searches. In a pre-processing step, a N-bit (for N rules) bit-map is calculated in 

which for each interval in the given dimension the nth bit is set if rule n is contained 

within the respective interval. During the search operation, the packet's fields are 

used to determine the d intervals, in which the header fields lie. The d bitmaps may 

then be combined by a logical AND-operation in order to find all rules matching the 

packet fields in all dimensions. The searches in d dimensions may be parallelized in 

a hardware implementation in order to save search time and increase the 

performance of the algorithm. One drawback of bitmap-intersection is its storage 

complexity of O(dN2) [55], i.e. a classification rule base in d dimensions with N rules 

scales quadratically in the number of rules. Table 5 shows the bitmap-intersection 

scheme for the two-dimensional rule base presented in Table 4a. 
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Table 5: Bitmap Intersection - Intervals and Bitmaps 

Dimension Interval # Interval Associated Bitmap 

0 1 0 ≤ P[0] ≤ 3 1101000 

0 2 4 ≤ P[0] ≤ 15 1011010 

0 3 16 ≤ P[0] ≤ 19 1011000 

0 4 20 ≤ P[0] ≤ 23 1001000 

0 5 24 ≤ P[0] ≤ 31 1001001 

0 6 32 ≤ P[0] ≤ 47 0001001 

0 7 48 ≤ P[0] ≤ 63 0001100 

1 1 0 ≤ P[1] ≤ 7 0001010 

1 2 8 ≤ P[1] ≤ 15 0000010 

1 3 16 ≤ P[1] ≤ 23 0000110 

1 4 24 ≤ P[1] ≤ 31 1000110 

1 5 32 ≤ P[1] ≤ 39 0110011 

1 6 40 ≤ P[1] ≤ 47 0110001 

1 7 48 ≤ P[1] ≤ 63 0100001 

 

Assume an arriving packet with P[0]=25 and P[1]=39. The one-dimensional searches 

will figure out that 25 belongs to interval 5 in the first dimension and 39 belongs to 

interval 5 in the second dimension. The algorithm now combines the two concerning 

bitmaps (1001001 AND 0110011)=000001 and the resulting bitmap indicates that 

rule 6 is the only matching result. If we assume a packet with P[0]=10 and P[1]=30 

the combination of the bitmaps (indices 2 and 4) would yield (1011010 AND 

1000110)=1000010 and rule zero (the leftmost bit) would have to be chosen as the 

highest priority match. 

Similar as in bitmap-intersection, also crossproducting [60] constructs the d-

dimensional classification out of d one-dimensional range lookups. In contrast to 

bitmap-intersection Srinivasan et.al. precompute a crossproduct table that contains 

the best matching rule for all possible combinations (i.e. crossproducts) of the 

ranges in each dimension. The worst case storage complexity of the crossproduct 

table O(Nd) [55] is even worse than that of bitmap intersection, which makes the 

algorithm practical only for relatively small rule bases. In order to address the 

principle storage space problem, the authors of [60] propose an on-demand 

calculation of the table that behaves like a cache. For every search operation, the 

matching ranges are identified and the crossproduct of the indices is formed. If this 

is already contained in the (incomplete) crossproduct table, the classification result 

may be obtained in a single lookup. Otherwise the rule base has to be inspected (by 

linear search!) and the corresponding entry will be appended to the crossproduct 

table cache. By this optimization the authors promise to achieve a good average-

case classification performance with a viable storage requirement. In addition, the 
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authors of both bitmap-intersection and crossproducting assume smaller rule bases 

with a few thousand rules at most. 

2.3.2.5. Distributed Crossproducting of Field Labels (DCFL) 

In 2004, Taylor introduced DCFL [64], [65], which is essentially an optimization of the 

crossproducting scheme with a strong focus for hardware implementation. The 

classification process is split into several steps, which may be implemented in a 

hardware pipeline as shown in Figure 16. 

At first, relevant packet fields are extracted from the packet and the one-

dimensional field searches are initiated, which compare the field value of the current 

packet against the superset of all possible values present in the given classification 

rule base. The result of these searches is a set of labels, representing one or more 

matches per header field. 

Second, the labels are fed into a so-called aggregation network. Here, at least two 

label sets from the first search stage are combined (i.e. the crossproduct of the label 

sets is calculated) and the outcome is compared against the set of valid 

crossproducts that exist in the given rule base. In order to keep the complexity of 

the crossproduct evaluation and set membership query low, combining only two 

one-dimensional search results at a time appears to be a reasonable choice. The 

remaining set of crossproducts is assigned new labels that can be fed into 

subsequent aggregation stages in a recursive fashion.  

At the final step of the aggregation network, a label for one matching rule or several 

labels in case of overlapping rules will be found. In the latter case, a priority 

resolution scheme is used to find the highest-priority matching rule from the given 

set of labels. 
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Figure 16: DCFL Classification with Three-dimensional Rule Base from Table 4b 

A distinct feature of DCFL is its update procedure, which is accomplished by 

sending special "update packets" through the stages of the aggregation network 

that may update the local crossproduct tables and label assignments. This update 

feature allows for consistent rule base changes while maintaining a high search 

performance. 

In contrast to the previously presented crossproducting scheme (see 2.3.2.4), the 

storage space issue is addressed by aggregating the results not in a single step, but 

distributing the decision over several pipeline stages. As in each stage some 
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crossproducts, which would not lead to matching results in the final rule base, are 

filtered out; the total storage complexity can be reduced. This effect can be 

observed in Figure 16, where for packet 1 the crossproduct (5,L10) is filtered out in 

the second stage; the same holds for crossproduct (4,1) for packet 1 in the first 

aggregation stage. As the chosen example rule base has wildcards - and therefore 

overlapping specifications for many rules - only in its third dimension, the number of 

matches from the individual field searches is limited to one or two. The number of 

matches per field may however increase to an order of up to 5 for realistic rule 

bases with overlapping range definitions and more wildcard specifications [64]. In 

consequence, the size of the crossproduct at each aggregation note may multiply to 

a range of 5×5=25 crossproducts that have to be searched against the list of 

relevant crossproducts. While the size of the crossproduct could therefore grow in 

subsequent steps (e.g. 5×25=125), the filtering of the obtained crossproducts 

against the set of relevant crossproducts keeps the number of labels propagating to 

downstream aggregation nodes limited.  

Taylor states himself that the choice of the correct aggregation sequence, i.e. which 

header field combinations should be combined first, has a significant impact on the 

size of the intermediate crossproducts; and in turn onto the performance of the set 

membership query. For static rule bases, an optimized aggregation sequence may 

be found in advance, but the performance may deteriorate by subsequent 

incremental updates to the rule base. He proposes using a dynamically 

reconfigurable interconnection network between the individual pipeline stages, but 

has not further elaborated this concept. 

2.3.2.6. Multi-Field Classification using Binary Decision Diagrams (BDDs) 

In their 2003 paper, Prakash et.al. [66] regard both the IP lookup function and the 

more general packet classification task as a logical synthesis problem. Lookup and 

classification problems are formulated as a Boolean function that takes the bits of 

the packet header as inputs and computes the index of the desired action or the 

next-hop destination as output. 

In an initial attempt, they tried to feed the Boolean equations obtained from 

disassembling a backbone routing table to the Xilinx synthesis tools for 

implementation. This approach failed, but they were later able to route a manually 

generated BDD structure onto the FPGA fabric. However, this solution disappointed 

performance-wise with a combinatorial path delay of 85 ns. 

Finally, a solution for the IP lookup problem is presented, in which the BDD of the 

routing table is calculated offline and its nodes are encoded in an array of SRAM 

memories that are used for searching through the BDD with the address bits from 

the incoming packet. Some optimizations are presented to save on resources 

needed for implementing the IP lookup. 
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The authors prove that a straightforward extension of the BDD-based routing 

scheme is not feasible for full five-tuple classification, as the memory requirements 

for the BDD scales exponentially. This is also a known problem for existing trie-

based techniques. In order to obtain a viable solution, they present a partitioning 

technique for the classification rule base in order to obtain a set of small BDDs that 

may be evaluated in parallel. The resulting individual actions are then fed into a 

priority resolution stage. 

An important advantage of using BDDs versus binary decision trees (see 2.3.1.2) is 

their node sharing property. Isomorphic sub-trees of a binary decision tree are 

merged into a single instance, which allows saving memory proportional to the 

amount of common structure in the rule base. In the outlook section of the paper 

[66], the authors mention the possibility to move the approach from reduced 

ordered BDDs (ROBDD) to free BDDs, where the variable ordering between different 

branches in the diagram is not necessarily uniform. Although free BDDs offer a 

theoretical benefit in storage space, they state that a synthesis methodology for 

such free BDDs is not yet known.  
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Figure 17: Reduced Ordered BDD (ROBDD, top) and Free BDD (bottom) for Boolean 

Function CEECBAEFEBEADf   

Figure 17 shows both a ROBDD for the variable ordering A, B, C, D, E, F and a free 

BDD for an example Boolean function CEECBAEFEBEADf  . While a 
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binary decision tree for the given function would result in 63 internal nodes, 64 

leaves and a uniform depth of 6, the ROBDD represents the same function with only 

10 nodes and two leaves (0 and 1; shown several times in Figure 17 for clarity) and 

an average depth of 4.14. A free BDD, which has been constructed using the 

heuristic described in chapter 4.2.3, has 9 nodes and an average depth of 3.7. 

The gained insights on the theory of BDDs and their properties have partially 

inspired the development of the HDGA classification algorithm implemented in the 

FlexPath Path Dispatcher (see 4.2).  

2.3.2.7. Traffic-Aware Decision Tree Classifiers 

In 2005, Cohen and Lund [67] presented a design method of a traffic-aware decision 

tree classifier for software implementation of a standard ACL deployment in ISP 

edge routers. The method exploits structure found in real-world firewall applications 

to obtain a decision tree with good average-case search times and reasonable 

memory consumption.  

Regarding commercial deployments, the authors state that TCAMs (see 2.3.1.5) are 

the most widely used form of classification engines, but they hint to insufficient 

support of range matches and high power consumption as incentives to look for 

alternative solutions. Tree-based classifiers are identified as most effective 

candidates with respect to the memory versus search time tradeoff.  

One specialty of the proposed tree, that is in addition to the classical decision tree 

scheme as discussed in 2.3.1.2, is the "common branching" technique. When 

splitting the rule base at an internal node of the tree rules, which would replicate to 

both children, are handled separately in a list structure. This technique addresses 

the memory blowup problem otherwise associated with tree-based approaches, but 

on the other hand increases the search time needed within the tree node. In 

addition, a tree node is not further split, if the remaining set of rules could also be 

resolved by linear search. This further reduces the storage requirements for the tree 

structure.  

Another optimization is based on the observation that realistic firewalls contain a 

few "allow" rules and many "deny" rules. However, most of the traffic will be 

admitted to the network: either it has been filtered before in other parts of the 

network already, or it belongs to "legal traffic". Thus, it seems attractive to construct 

the tree in a manner such that "allow" packets are evaluated before the "deny" 

packets, i.e. they can be evaluated in deeper branches of the tree. The optimized 

tree would then yield a good average-case performance with realistic traffic. 
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2.3.2.8. Modular Packet Classification with Parallel Search Trees and Linear 

Search 

The final classification technique to be mentioned in this section is a modular 

approach proposed by Woo [68] in 2000. The classification scheme fits to an 

arbitrary-dimension problem, although only two- and five-dimensional classification 

have been explicitly addressed in the paper. The basic idea is to reduce the number 

of eligible rules that may match a given packet in three basic steps:  

– In the first step some bits from the incoming packet header are used to determine 

one of several binary or 2m-ary search trees for the second step.  

– As the selected search tree is traversed, the number of rules still fitting the packet 

header is further reduced. The partitioning continues until a specified limit of rules 

(the paper proposes values between 8 and 128 rules) is reached to avoid the 

memory size explosion associated with exact rule matching in tree structures.  

– The final step of the algorithm searches through the remaining set of rules either 

by linear search, binary search or using a TCAM.  

For the scope of the paper, a software implementation is presented, that has been 

especially optimized to work well with page-oriented memory hierarchies and 

achieves a maximum classification throughput of 100k packets per second. The 

author addresses the issue of covering and overlapping filter definitions and shows 

that a separation of similar filters using linear search may be more efficient than 

trying to distinguish them in a search tree structure.  

 

2.3.3. Packet Classification and Logic Minimization 

An interesting aspect about both single-field and multi-field packet classification is 

addressed by Lysecky et.al. in [69]. In their publication, they look at the task of 

implementing a firewall ACL in a TCAM device. The problem is that the cost for the 

implementation is growing with the total amount of memory consumed by the rule 

base. They state that logic minimization has been used before on IP routing tables in 

order to reduce the number of entries by exploiting overlapping specifications in the 

original routing table and replacing them with a merged entry that contains 

additional wildcard entries. The authors show that they can apply this technique also 

to the field of firewall filter rule bases and present a logic minimization tool that is 

specially tailored for embedded deployment. While reaching a similar optimization 

performance as the state-of-the-art Espresso technique ([70], [71]), they can claim a 

factor of 20 improvement in processor runtime on an embedded ARM7 CPU. The 

investigated rule bases have been reduced by between 17% and 40% using their 

logic minimization algorithm. 
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In contrast to the algorithms presented in sections 2.3.1 and 2.3.2, the logic 

minimization is not used to calculate the best matching rule of the rule base given 

the header fields of an arriving packet, but it performs a pre-processing of the rule 

base. The size (and therefore the search complexity) of the rule base may be 

reduced, in order to keep the required storage space for the rule base smaller and 

aid the classification algorithms in finding the classification result in a faster way. 

2.3.4. Conclusions 

Packet classification is a crucial part of packet processing that exhibits a high 

degree of complexity and is very performance critical. Therefore, packet 

classification has attracted lots of attention in the academic environment for 

decades. In the early stages, many researchers focused on single-field classification 

problems in order to improve the processing performance for simple Internet 

routers. Later, the focus changed more towards multi-field packet classification with 

the increasing importance of more advanced networking applications that introduce 

QoS and security features into the network infrastructure and require flow-specific 

treatment of the network packets. 

The state-of-the-art multi-field classification techniques are all optimized for 

evaluating firewall rule bases, which typically involve specifications of the Internet 

five-tuple along with the associated actions. This flow-based granularity of the rules 

leads to a very regular structure of the rule bases and a size between several 

hundred and a few ten thousand entries. Range and prefix matches, which are 

commonly found in rule specifications, can be most effectively addressed with tree- 

or trie-based search structures. However, these techniques suffer from an 

exponential memory consumption, if exact matches have to be determined. 

Therefore, some more advanced tree classification algorithms try to combine the 

tree traversal with linear search, binary search or TCAM lookups for selecting the 

matching rule from a smaller set of candidate rules determined by the decision tree. 

Another group of classification algorithms addresses the problem with a multi-stage 

approach that constructs the final decision out of the results of individual field 

searches (e.g. Crossproducting, Grid-of-Tries and DCFL) or by cascading several 

searches (e.g. RFC, HiCuts, HyperCuts). Except for DCFL and simple tree-based 

schemes, incremental updates of the rule base are not easily supported, which 

means that a change in the rule base requires a complete recomputation of the 

search data structure. 

Another interesting aspect found in this prior art survey is the fact that the 

complexity of the classification problem may be reduced in a rule base pre-

processing step by means of logic minimization. The logic minimization allows 

compressing the rule base by dropping redundant or contradicting rule base 
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specifications, which are typically introduced by the network operators during 

manual firewall specification. 

As I will discuss later in chapter 4.1, the multi-field classification problem associated 

with determining the correct processing path for the arriving packets differs in 

several parameters from the firewall-centric investigations of previously published 

algorithms. The processing path in a FlexPath NP is mainly determined by the 

application characteristics of the underlying networking application (see chapter 

2.2), and not by the individual flow ID associated with the arriving packet. Therefore, 

the classification can be limited to fewer rules, but the rule specifications have to be 

extended to contain more fields from the packet header than just the traditional 

Internet five-tuple. 
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2.4. Multi-Processor Load Balancing 

The prior art survey on current network processor architectures in section 2.1 has 

shown that all relevant NP architectures are multi-core devices with a multitude of 

processing elements. Although there exist some strictly pipelined NPs, most devices 

today feature a parallel processor cluster and adhere to the run-to-completion 

programming model. In these architectures, arriving packets will be assigned to a 

specific processor and the networking application can be written as a simple, 

sequential program from the point of view of the programmer. In order to exploit the 

parallelism of the processing resources, a load balancing strategy is needed, which 

decides about an appropriate CPU, to which an arriving packet will be assigned. If 

the load can not be (almost) equally distributed over the available pool of processing 

resources, some processors may run idle, while others become overloaded and 

some of the arriving packets are lost. In such a case, the available resources of the 

device would not be utilized, resulting in an inferior system performance. 

This load balancing problem also extends to system setups, where the processing is 

achieved by a sequence of processors (e.g. parallel pipeline processing, where one 

out of several pipelines has to be selected) or a combination of parallel processors 

and shared hardware accelerators. 

2.4.1. Hashing-based Load Balancing Schemes 

At INFOCOM 2000, Cao et.al. [51] presented a comprehensive performance 

comparison of direct hashing-based Internet load balancing techniques for different 

hash functions and for realistic Internet traffic traces. In addition, the direct hashing-

based methods were compared to table-based schemes with threshold mapping 

and index-based load assignment (see Figure 18) that allow run-time adaptation of 

the flow-bundle to processor mapping. However, the authors did not elaborate 

potential adaptation strategies in detail but restrict their observations to a rather 

abstract description and a few simulation results. 
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Figure 18: Classification of Hashing-based Load Balancing Schemes 

The CRC-16 (16 bit cyclic redundancy check) of the Internet five-tuple is identified 

to provide the best load balancing results applied in a static direct hashing-based 

assignment. The table-based adaptive algorithms are based on an XOR of the IP 

source and destination addresses and achieve a similar performance as the CRC-

based direct hashing approach. 
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2.4.2. Hash-based Load Balancing with Overload Spraying 

In 2002, Dittmann and Herkersdorf proposed a hashing-based load balancing 

system for parallel processing element (PE) network processors [73]. For each 

incoming packet a hash value is computed out of the Internet five-tuple header 

fields. A load balancing table maintains a list of hash values, their associated PE and 

a timestamp, when the last packet with the given five-tuple hash had entered the 

system, i.e. it can be categorized in the table-based hashing techniques with an 

index-based approach as shown in Figure 18. If the incoming packet's flow has not 

expired, the packet is forwarded towards the PE queue specified in the load 

balancing table. If the timestamp is older than a predefined timeout value, the entry 

in the load balancing table is updated to direct the packet towards the least loaded 

PE queue (see also Figure 19).  
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Figure 19: Hash-based Load Balancing with Overload Spraying 

Two exceptions from this basic scheme are presented: An existing flow entry may 

be changed and re-mapped to another PE before the timeout has occurred, if the 

initial PE queue is already overloaded. In this fashion, an unnecessary packet loss in 

the NP is avoided. Second, if the set of flows mapped to a single hash value (i.e. 

hash collisions!) would exceed the processing capabilities of a single PE, these 

packets may be distributed over several PEs, which is called packet spraying. 

It is important to realize that packets may be reordered, when a re-mapping takes 

place during a flow bundle's lifetime, and - of course - when packets of an 

excessive flow bundle get sprayed. Packet reordering has been identified to cause 

problems with the congestion avoidance mechanism of TCP, and should be avoided 

as far as possible [78]. 
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2.4.3. Adaptive HRW Hashing (AHH) 

Kencl [74] refines the basic idea of hashing-based load distribution in network 

processors in his dissertation of 2003. He introduces an adaptive control loop in 

combination with a robust highest random weight (HRW) hashing to the load 

assignment process, called adaptive HRW hashing (AHH). 

The highest random weight algorithm finds the target PE index j out of m PEs for a 

given packet with the header field vector v using PE-specific weights xk,  

k{0, …, m-1} in the following way: 

  
 

  kvhxjvhx
k

mk
j

,max,
1,...,0




 (2-11) 

This means that the hash function has to be calculated for each combination of the 

extracted packet header fields (typically the Internet five-tuple) and each possible 

processor index k. The hash values, which are assumed to yield random values, are 

weighted with factors xk that can be adjusted during system runtime in order to 

reflect the relative utilization of the associated processor. The packet is assigned to 

the PE, for which the product of the weighting factor and the hash function 

computed over the packet ID and processor ID is maximized. 

An adaptive control loop assures that the weight vector x=[x0 … xm-1] used in the 

HRW hashing is modified during runtime, such that the assignment of flow bundles 

to the PEs is more evenly balanced for the biased hash bundles found in real 

Internet traffic. Packet reordering may occur, when the weight adaptation triggers a 

re-balancing of flow bundles from one PE to another. 

An important characteristic of the AHH load balancing scheme is the minimum 

disruption property, which means that when gradual changes are necessary in 

rebalancing the load, only a few distinct packet flows are re-mapped and not the 

entire hash space is reassigned with new values. This could be well observed when 

comparing AHH to an interval-based adaptive hashing scheme (see Figure 18 in 

2.4.1), where up to 50% of all flows could be re-mapped if a single PE fails and the 

load has to be re-distributed over the remaining PEs in the processor complex. With 

the minimal disruption property, only the flows assigned to the failing PE are shifted. 

2.4.4. Adaptive Burst Shifting (ABS) 

The load balancing approach of Shi et.al. [75] from 2005 is based on the observation 

that Internet traffic usually consists of many flows with relatively low activity and 

only a few flows with high activity, referred to as aggressive flows. Such a 

classification has also been described before by Brownlee and Claffy [79] in 2002, 

where they classify Internet traffic flows into dragonflies and tortoises or elephants 

and mice. Dragonfly and tortoise traffic refers to the lifetime of traffic flows, while the 

elephant and mouse analogy refers to the flow size or intensity, i.e. the amount of 
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data exchanged between two communication partners. Shi et.al. introduce an 

adaptive burst shifter (ABS) that complements known hash-based load assignment 

schemes. It remaps only aggressive flows from one PE to another if the hashing-

based assignment leads to a temporarily unbalanced load situation. The non-

aggressive flows are still mapped solely by the result of the implemented hashing 

scheme (see Figure 20). 
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Figure 20: Adaptive Burst Shifting (ABS) 

Since the shift of a few aggressive flows already has an appreciable effect on PE 

load, the number of hash flow shifts can be reduced and thus also packet reordering 

within the processor cluster of the NP. ABS uses a two stage approach with a Flow 

Classifier to identify the aggressive flows in the traffic, and a Load Adapter that 

remaps the aggressive flows to the least-loaded PE when needed. 

2.4.5. Hashing Adapted by Burst Shifting (HABS) 

In 2006, Kencl and Shi proposed to combine their previously implemented load 

balancing schemes to achieve even better performance [77]. In the combined 

method called HABS the result of an AHH load assignment is fed into an active Flow 

Classifier and Load Adapter structure of the ABS scheme (see Figure 21). In contrast 

to the original ABS scheme presented in [75], all flows may be considered by the 

Burst Shifter now [76] and not just the aggressive ones. If the system is in a well 

balanced state, the assignment from the hashing-based stage is used. Whenever an 

imbalance is detected, the ABS part comes into play and moves loads directly away 

from the heaviest-loaded PE to the least-loaded PE, even before the adaptation 

routine inherent in the AHH load balancer might react. In addition, the algorithm 

insures that flows may only be re-mapped at the beginning of a burst, i.e. when no 

other packet from the same flow is already in the system. 
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Figure 21: Hashing Adapted by Burst Shifting (HABS) 

The combined HABS scheme delivers the best performance of the current schemes 

proposed in the prior art with respect to the number of active flow re-mappings and 

packet reordering rates. However, the burst shifting algorithm requires maintenance 

of a lot of state information, which makes the algorithm somewhat complex for 

implementation. 

2.4.6. Conclusions 

While load balancing schemes have been discussed in the scientific and high-

performance computing area for a long time, they gained attention in the network 

processing field with the introduction of network processors that are implemented 

as multi-processor system-on-chip architectures. In contrast to other fields, load 

balancing for networking applications comes with domain-specific constraints, 

which are all reflected in the previously presented load balancing schemes. 

The most prominent requirement for network processor load balancing is that 

packets, which belong to the same logical connection, should be forwarded in the 

same sequence as they arrived. This means, that packet reordering caused by 

assigning packets of the same flow to different PEs should be avoided as far as 

possible:  

– Static hashing-based load balancing insures this sequence by assigning the 

packets based on a hashing of the Internet five-tuple, which serves as a unique 

flow ID. The drawback of such static schemes is that due to an uneven 

distribution of the hash bundles in the total hash space, some processors are 

assigned more traffic than others. As a consequence, the available processing 

resources of the NP are not utilized to their full potential. 

– Adaptive load balancing schemes address this problem by allowing a 

reassignment of flows during the system runtime. Obvious benefits are a more 

evenly balanced load distribution, at the price of risking a few out-of-order 

packets during the load adaptations. 

Another important property of stateless network processing applications (which 

constitute the majority of network traffic) is the independence of the individual 

packets. This independence allows deploying the packet spraying technique that 

permits a very uniform distribution of the arriving traffic over the available processor 
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resources. However, packet spraying is only proposed as a remedy for overload 

situations due to the before mentioned packet reordering issue. 
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3. FlexPath NP Architecture 

In the following sections, I will introduce the FlexPath NP architecture that provides 

an NP with different on-chip processing paths. These paths comprise processing 

with varying degrees of hardware offload - optimized for different networking 

applications. After deriving the architectural concept based on an analysis of 

networking applications and state-of-the-art NPs, the benefits are shown by means 

of analytical analysis and SystemC simulations of a basic FlexPath NP model. 

The concept for the packet classification algorithm that is accomplished in the Path 

Dispatcher is a crucial element of a FlexPath NP. Because of its importance for the 

proposed NP architecture, I have devoted a separate chapter for its detailed 

discussion (chapter 4). 

3.1. Motivation and Problem Formulation 

Figure 22 shows the typical functional unit traversal of state-of-the-art NP 

architectures as presented in chapter 2.1. 
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Figure 22: Functional Unit Traversal in a Generic Network Processor 

Depending on the individual design, one or several MAC interfaces provide a 

connection to either the physical link attachment(s) or the switching fabric (see also 

Figure 2 in chapter 1). The traffic may be aggregated before it will need to be stored 

(typically this means implementation of some kind of DMA), in order to make the 
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packets accessible to the packet processing units. Then, the packets are transferred 

to the central processing complex, which usually consists of a multitude of 

programmable elements (PE) - also referred to as CPUs in the following - and 

networking-specific hardware accelerators. As discussed in chapter 2.1.3, the 

predominant arrangements for the CPUs are parallel processing clusters and 

processor pipelines (Figure 4). Hardware accelerators are accessed under control of 

the programmable processors. In both processor cluster and processor pipeline 

architectures, every packet will traverse a CPU at least once and the exact traversal 

pattern of the various functional units (e.g. frequency and type of hardware 

accelerator calls, one or several software threads) is determined by software. After 

the correct destination interface and scheduling priority has been selected and any 

possible additional protocol processing is finished, the packets are forwarded to the 

Traffic Manager. Here, the packets are queued to resolve output port contention. 

Depending on operational requirements, queuing may be achieved on a coarse 

traffic class granularity with several prioritized queues per port or on a fine grained 

flow basis. In addition to queuing, the Traffic Manager may also perform traffic 

shaping before releasing the packets onto the outgoing links. Virtually all of the 

commercial network processors presented in chapter 2.1 feature such a Traffic 

Manager - either as an integrated building block in the NP chip, or as a separate 

chip - which is tightly coupled to the actual processor chip. 

In order to illustrate the operational constraints for an NP system, consider the 

following case study for a 10 Gbit/s full duplex device, which is quite representative 

for the current mid-range equipment. The 10 Gbit/s may be achieved for example by 

connecting the NP to either four OC-48/STM-16 Sonet/SDH, ten 1 Gbit/s Ethernet 

or a single 10 Gbit/s Ethernet link. Due to the different protocol overheads on the 

physical layers, the following packet rates and inter-arrival times can be derived 

assuming that on average the same 10 Gbit/s received from the lines are transferred 

over the backplane (i.e. switching fabric) interface. 

As we can see from the figures in Table 6, the packet rate is in the tens of Mpps 

range for the worst case of shortest size packets. The packet rate is directly coupled 

to the event or interrupt rate seen by the central processor cluster. Consequently, 

the interarrival time of two consecutive packets seen by the processor complex may 

be as low as 20 ns. The Packet-over-Sonet/SDH (PoS) protocol is more efficient for 

shortest size IP payloads, thus the requirements for an NP targeting PoS are higher 

than for comparable Ethernet deployments. 
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Table 6: Processing Constraints for 4x STM-16 Packet-over-Sonet/SDH or 10 Gbit/s 

Ethernet Links2 

Transmission 

Standard 

Packet Size IP Data Rate 

(duplex) 

Packet Rate Interarrival time 

Sonet/SDH, PoS 40 byte IP 15.648 Gbps 48.9 Mpps 20.5 ns 

Sonet/SDH, PoS 1500 byte IP 18.904 Gbps 1.576 Mpps 635 ns 

Ethernet 40 byte IP 9.524 Gbps 32.06 Mpps 31.2 ns 

Ethernet 1500 byte IP 19.506 Gbps 1.626 Mpps 615 ns 

 

According to benchmark results ([85], [86]), simple IP packet forwarding consumes 

around 350 instructions per packet, while more complex deep packet processing 

applications (e.g. intrusion detection, virus scanning, software-based cryptography) 

may require up to 3,000 instructions normalized to the shortest packet size. 

Applying these figures to the packet rates in Table 6, up to 17,115 MIPS processing 

performance are required for the simple forwarding task and up to 146,700 MIPS for 

the most complex deep packet processing applications, if this kind of processing 

would have to be applied onto the entire traffic from the PoS links. Assuming a 

state-of-the-art embedded processor core with 1.5 GHz clock frequency and an 

optimistic CPI of 1.0, this processing power would translate to 12 cores for 

forwarding and 98 cores for the deep packet processing task.  

Of course, by making use of application-specific hardware accelerators, the latter 

figure can be reduced significantly, as the computational density for dedicated 

hardware modules is between two and four orders of magnitude better than that for 

programmable CPUs [87]. The extensive use of hardware acceleration for deep 

packet processing can also be observed in virtually all commercial NP architectures 

(see section 2.1.1). Still, the processor cluster has to deal with the high event rates 

caused by the incoming packet stream, and the event rate would already scale by a 

factor of two, when a packet is once handed over between the CPU and a hardware 

accelerator. 

 

 

The above described case study reveals the following challenges for current NP 

architectures: 

                                                
2 These calculations assume transmission of 40-byte and 1500-byte IP datagrams over PoS 

and Ethernet media. Protocol overhead calculations for PoS include SDH overhead, 9 bytes 

PPP overhead and 1/128 times payload size for byte stuffing (see also [80]). For Ethernet, 

padding for minimum frame size of 64 bytes, preamble and inter-frame gaps are included. 
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– Even simple networking applications (e.g. IP forwarding) require many parallel 

processor resources in order to cope with the high packet rates observed on links 

with bursts of shortest size packets. 

– Hardware accelerators help to reduce the number of required processors for 

compute-intensive applications (e.g. IPsec, virus scanning) because of their higher 

computational density. However, software-controlled accelerator calls increase 

the event rate for the controlling CPU by at least a factor of two. 

– The processing path of the packets through the NP system is determined by 

software. In certain situations, it can happen that the processor receives a packet 

and relies on the results of hardware accelerators (e.g. classification or look-up 

using a network search engine, decryption of a protected packet, etc.) before the 

software can continue with meaningful processing. The overhead associated with 

inspecting the packet and immediately dispatching it to another unit in the NP 

deteriorates the overall system performance. 
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3.2. FlexPath NP Concept 

Based on the challenges described in the previous section, ways to improve the 

performance of network processors on an architectural level are sought. 

The basic idea behind FlexPath NP is to improve the performance of the system by 

most effectively utilizing the available processing resources. Current NP 

architectures have already found efficient software and hardware means for the data 

path processing of various applications. But the control path, which is currently still 

implemented in software, might be improved with the help of specialized hardware 

units in several positions of the architecture that help direct packets to the most 

suitable processing element (PE). The FlexPath NP architecture [7], proposed in 

2005, achieves performance benefits in contrast to conventional NP architectures 

through the following measures: 

– Introduction of hardware-offload units near the ingress and egress side interfaces 

of the NP, which are able to relieve the central processor complex from simple, 

recurring tasks such that the intelligence inherent in the programmable resources 

is not "wasted" for "routine" tasks. 

– The hardware-offload units should be able to handle basic forwarding traffic, such 

that the central processor complex can be completely bypassed for those kinds of 

packets. This feature is in the following referred to as "AutoRoute" path in 

contrast to a CPU path. 

– The FlexPath NP provides a classification capability near the ingress interfaces in 

order to differentiate between packets of various networking applications. The 

classified packets are then directed on a processing path (i.e. traversal sequence 

of processing units), that is especially optimized for the application. The simplest 

example would be the choice between a path through the central processor 

cluster and the AutoRoute path. 

– The architecture should feature a packet distribution system, with which hardware 

accelerators may be accessed directly, i.e. without involving a CPU. In case of 

arriving IPsec packets, the event rate for the CPUs can be decreased, if the 

decryption core may be directly accessed by the ingress side hardware. After the 

hardware accelerator has finished its work on the packet, a mechanism is needed 

to efficiently pass it on to a CPU to finish the packet processing functions. Thus, 

packet paths through the NP system may comprise several chained entities 

(multi-hop paths). 

– In addition, the classification function should be run-time reconfigurable, such that 

the system can be adapted for newly developing applications in the field and also 

to short-time changes in the traffic mix during system runtime. The classification 
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may also be exploited to support advanced QoS features and load balancing 

algorithms in the NP that further improve the performance of the system. 

Figure 23 shows the traversal of the different functional units in a FlexPath NP with 

the before mentioned extensions marked in orange and yellow. While the entire 

range of hardware extensions will be presented in detail in the following paragraphs, 

I will later focus only on the functional modules in the ingress part of the NP, namely 

Pre-Processor, Path Dispatcher and load balancing techniques (orange blocks). The 

remaining functions (yellow blocks) are fully elaborated in Michael Meitinger's 

dissertation [107]. In our final demonstrator implementation of a FlexPath NP (see 

chapter 6), we have included the SmartMem buffer manager developed by Daniel 

Llorente [108] as DMA engine (green blocks). The following paragraphs introduce 

the most important characteristics of the entire FlexPath architecture. 
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Figure 23: Functional Unit Traversal in a FlexPath NP 

Just like in the generic NP case (Figure 22), it may be assumed that the aggregate of 

the line interfaces and the switching fabric interface is combined onto a single high-

capacity data path.  

The Pre-Processor is the first FlexPath functional unit after the initial traffic 

aggregation (see Figure 23). As the decision about the further processing path in the 

system is dependent on the networking application required for each individual 

packet, the packets have to be analyzed first. A first step comprises parsing the 

header fields and extracting information like the Internet five-tuple (i.e. IP source and 



Chapter 3 - FlexPath NP Architecture 

  85 

destination addresses, layer four protocol number and layer four port numbers). In 

addition further differentiating fields like the IP DiffServ codepoint (DSCP), which 

contains information about the forwarding priority of the packet, IPsec SPI numbers 

or control plane protocols will be recognized. The parsed header fields may also be 

used directly to initiate lookups (e.g. IP routing lookup) in an attached hardware 

lookup engine (e.g. TCAM, NSE). The collected information about each packet is 

assembled into an additional data structure called packet context (dashed blue 

arrows in Figure 23) that is accessible by all further NP-internal processing modules. 

In addition, it is also possible to perform basic packet integrity checks at this early 

stage. If corrupt frames can be detected early, they might either be handed over 

directly to the NP control point for further error handling (e.g. generating ICMP 

messages) or could be silently discarded without requiring CPU intervention or 

wasting memory bandwidth during the ingress DMA. Furthermore, the CPUs in the 

processing cluster don't have to perform these checks in software anymore, which 

reduces the processing performance requirements per packet.  

The Path Dispatcher uses information in the packet context for the classification of 

the arriving packets into the different applications and traffic classes, which are 

currently supported by the NP system. A software process that is running on the 

control plane CPU of the NP keeps track of the current system state and computes 

an appropriate classification rule base, which is then applied to the incoming traffic. 

Based on the classification result, the packets are dispatched to the pre-configured 

processing path in the NP system, by adding the type and sequence of further 

processing modules to the packet context. Apart from more or less static rules, 

which direct certain traffic types like control packets to the control plane CPU, 

discard corrupt frames, etc., dynamic rule table updates can be used to perform 

load balancing within the processing complex or dynamically enable AutoRoute for 

certain established and well understood traffic types. A default rule should always 

be configured, which directs "unknown" packets to the data plane CPU cluster for 

further determination of an appropriate action. 

After the choice of the further PE traversal in the system, packets and packet 

contexts have to be transferred into an appropriate memory for processing. In our 

FlexPath demonstrator system we have made use of the SmartMem DMA 

architecture ([88], [89], [108]) that supports different storage locations depending on 

the further destination of the packet, i.e. for example that CPU-bound packets may 

be stored in a local SRAM near the processors, while AutoRoute traffic may be 

transferred into external SDRAM, where packets may sit until they are scheduled for 

retransmission by the Traffic Manager. The SmartMem generates a reference to the 

stored packet data and context called Packet Descriptor (red arrows in Figure 23), 

which is further passed through the individual functional units in the NP. 
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The different processing paths in a FlexPath NP result in varying processing 

latencies. As there is a possibility to change the path for certain traffic types during 

system runtime, packets of the same connection may become out-of-order. This 

packet reordering has a negative effect on the efficiency of the most dominant TCP 

transmission protocol [78]. The reordered packets should therefore be re-sequenced 

by the architecture, which is achieved in FlexPath by the Path Control. After the 

DMA has happened, the arrival sequence of the incoming packet descriptors is 

recorded by the Ingress Path Control. This information is later used by the Egress 

Path Control in order to detect reordered packets before retransmission from the 

NP.  

The packet descriptors are now assigned to the respective functional units (e.g. 

CPUs, hardware accelerators or the AutoRoute path) by the Packet Distributor. 

Depending on the type of processing element, this might require some amount of 

queuing and implementation of a suitable interrupt scheme for the respective types 

of processing elements. In case of a multi-hop processing path, the Packet 

Descriptor will be sent back to the Packet Distributor after each processing stage 

has completed its processing to reach the subsequent processing element. 

The network processing complex will usually be implemented by a combination of 

generic programmable processors (e.g. embedded RISC cores, ASIPs or 

microengines) and a set of hardware accelerators for specific high-performance 

operations. As laid out in the prior art discussion in chapter 2.1.3, the programmable 

resources may be arranged either in a run-to-completion architecture or also as a 

processing pipeline (see Figure 4). With respect to the concept of various 

reconfigurable processing paths, the actual arrangement does not play an important 

role. In a symmetrical multi-processor cluster, the FlexPath functional modules may 

be used as means to perform load balancing or distributing traffic to CPUs, which 

are reserved for specific parts of the traffic (e.g. for QoS-sensitive applications or 

stateful processing applications). In addition, it is possible to invoke co-processor 

engines without prior CPU intervention, if the hardware accelerator is able to 

determine the necessary processing steps from the packet context alone. When 

regarding the pipelined processor approach, there may be different parallel pipelines 

or various entry points into a single pipeline for different application types. Here, the 

classification result can be used to choose a suitable pipeline or pipeline stage in 

advance. 

After having traversed the network processing complex, the packet descriptors 

reach the Egress Path Control. Packet sequence is determined on a flow-bundle 

basis and out-of-sequence packet descriptors are queued before passing them 

onwards to the Traffic Manager.  
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As in every conventional NP, the Traffic Manager performs per flow and/or port 

queuing, possibly with several different priority levels to resolve output port 

contention and it may implement egress side traffic shaping. After this, the packet 

descriptors are handed over to the DMA engine, which fetches the packet data 

along with an optional packet context for the Post-Processor. 

In the Post-Processor certain basic packet manipulations like MAC address 

replacement, TTL decrement, checksum calculation, etc. can be performed. The 

functionality has to be implemented thus far, that at least simple forwarding 

operations may be completed in order to enable the AutoRoute path. The Post-

Processor operations are encoded in a set of low-level instructions, which are 

stored in the packet context that travels along with the packet data. The Post-

Processor releases the completely processed packets towards the transmit side 

interfaces of the NP. 
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3.3. Concept Evaluation 

Based on the overview of the functional units of a FlexPath NP, I will first focus on 

the expected benefits of the AutoRoute feature for the proposed architecture by 

means of an analytical calculation. Subsequently, a trace-based SystemC 

performance simulation model of a FlexPath NP architecture is developed and used 

to evaluate the system behavior with respect to overall system throughput and 

highlighting scalability issues. Reference simulation results illustrate the baseline 

performance of a conventional processor-centric NP. These results are then 

compared to simulations with partial hardware-offload provided by the Pre- and 

Post-Processor units and the AutoRoute feature. 

3.3.1. Analytical Evaluation of AutoRoute in FlexPath NP 

The AutoRoute functionality, where the entire processing burden is shifted away 

from the programmable resources to a pure hardware path, provides the most 

significant relief for the processor cluster. In turn, the saved instructions otherwise to 

be spent on the AutoRoute packets can be dedicated to other traffic types that are 

present in the application mix at the same time. In order to compare the processing 

performance of a FlexPath NP with AutoRoute versus a conventional NP 

architecture, consider the following case study. Let's assume a conventional NP 

architecture with a parallel processor cluster as found in current Cavium devices [26] 

with 32 dual-issue superscalar RISC cores operating at 1.5 GHz. This is compared 

to a FlexPath NP architecture featuring only 16 or 24 of these cores in the processor 

complex, but they are complemented with the AutoRoute functionality (see Table 7). 

Table 7: Network Processing Complex Performance Comparison 

 Conventional NP FlexPath NP FlexPath NP 

CPU clock [f] 1.5 GHz 1.5 GHz 1.5 GHz 

Packet Rate [r] 49 Mpps 49 Mpps 49 Mpps 

CPU count [N] 32 16 24 

CPI 0.5 0.5 0.5 

Nominal Performance 96,000 MIPS 48,000 MIPS 72,000 MIPS 

Avg. Instr. per packet 

(no AutoRoute) [IPP] 

1,959 980 1,469 

 

If we assume that a fraction b of the traffic may be forwarded using the AutoRoute 

path, the available number of instructions per packet for the remaining traffic share 

can be calculated with the following formula, given the parameters from Table 7: 

 













brCPI

fN
IPP

1

1
 (3-1) 
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The resulting instruction budget IPP is plotted versus increasing AutoRoute shares b 

in Figure 24. 
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Figure 24: NP Processing Performance Comparison Conventional vs. FlexPath NP 

As the figures in Table 7 show, the two FlexPath alternatives possess only 50% or 

75% of the nominal processing performance compared to the processor-centric 

solution. However, by offloading parts of the traffic to the hardware-based 

AutoRoute forwarding path, CPU resources are freed and the resulting instruction 

budget for the remainder of the traffic increases. The break-even points for the 

investigated cases are reached at 25% offload for the FlexPath_24 and 50% for the 

FlexPath_16 scenario. Beyond these points the available processing budget is 

increasing dramatically; the 3,000 instruction limit for deep packet processing 

applications (see section 3.1) is matched at 53% and 68% offload with FlexPath_24 

and FlexPath_16 respectively - this is already 1.53 times the average performance 

offered by the 32 core reference approach. 

The critical question, which remains to be answered now, is: How much traffic can 

actually be offloaded to the AutoRoute path in realistic NP deployment scenarios?  

There is not a general answer to this question, because the suitability of traffic for 

hardware offload depends on the precise application mix and processing 

requirements which differ greatly in various locations in the network. As I have 

argued before, AutoRoute is only possible for well-understood and stable protocol 

stacks, where the processing capabilities remain limited.  
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Plain IP forwarding is a typical representative of an AutoRoute-friendly application. 

As the next-hop lookup operation is usually implemented in NSEs (see [53], [54]), it 

is easily conceivable that such a lookup may already be invoked by the Pre-

Processor, once the destination address has been retrieved from the packet header. 

The other necessary operations such as TTL decrement and checksum recalculation 

are covered by the Post-Processor. However, the offload cannot be used, if for 

certain reasons the processing of some or all of the traffic requires further inspection 

and recording of contents from upper protocol layers (e.g. application-layer 

information for application filtering, URL-based forwarding / load balancing, virus 

scanning, intrusion detection, etc.). However, these higher layer operations can by 

definition be applied only to packets carrying payload above the TCP header. As 

such, TCP acknowledgment packets without further payload provide a lower bound 

for the AutoRoute traffic share in an IP forwarding scenario. Internet traffic statistics 

made available by Sprint ([92]) show that there exist significant numbers of packets 

carrying only headers without further payload data. Statistics for 35 traces recorded 

in 2004 and 2005 are summarized in Figure 25 below. 
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Figure 25: 40 Byte TCP Packet Shares from Internet Links recorded in 2004/2005 

While the percentage of 40 byte packets from all traces is around 26.4%, the value 

is changing for different traces between 4.3% and 49.43% with a standard deviation 

of 13.1% (central black column). It can be seen, that the total statistic can be 

separated into two parts, a set of link traces (red column in the left) exhibit fewer 

short packets (average of 15.2% with a standard deviation of 5.2%) and the 

remaining traces (green column in the right) contain 38.3% of 40 byte packets on 

average with a standard deviation of 7.1%. Another side effect addressed by this 
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investigation is the fact, that it is exactly the shortest size packets are well suited for 

AutoRoute. These packets otherwise cause the highest event rates onto the central 

processor cluster (see Table 6). The remaining packets, which carry more 

information may be harder to process (there is more content to be inspected), but 

they also arrive with significantly smaller packet rates. 

Another case for AutoRoute can be extracted from the wireless networking scenario 

described in chapter 2.2.5. Here, we observed that by chaining several network 

elements on a common link towards the next-higher hierarchical element, up to 90% 

of the traffic would simply be forwarded, while the remaining traffic is subject to 

more computationally challenging protocol conversions (see Figure 7, Figure 8). 

The same mix of forwarding traffic and gateway traffic can also be observed at 

several places within the Internet hierarchy as described in Figure 1 (chapter 1) and 

chapter 2.2.6. The vast majority of traffic in the routers within the network will only 

have to be forwarded from one connecting interface to another on its way to the 

final destination. As laid out before, this forwarding is typically achieved by layer 2 

(e.g. carrier Ethernet, ATM) or 2.5 (MPLS) switching. This switching can easily be 

assumed to be performed by AutoRoute, if the implementations of the Pre- and 

Post-Processors in the FlexPath NP are adapted to the respective protocol stack. In 

essence, not significantly more than a simple lookup and a few basic header 

modifications are necessary to complete the switching function. However, there will 

also be a (smaller) share of traffic, that has reached the final destination within the 

current network at the concerned router; and thus has to be forwarded into the 

neighboring network (either towards the core or access network). Here, the gateway 

functions necessary for protocol conversion (e.g. termination of MPLS forwarding 

and conversion to ATM over SDH) and access control or traffic shaping required for 

valid entry into the neighboring network have to be performed. These conversions 

may not be mapped to dedicated hardware in such a straightforward fashion as the 

previously described switching functions, and will therefore be performed with the 

use of the programmable processing resources of the NP. Still, the required number 

of programmable resources can be dimensioned to provide sufficient processing 

power for the fraction of gateway traffic, while the FlexPath NP hardware functions 

may route the significant share of switching traffic via an AutoRoute path. 
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3.3.2. Simulative Evaluation of Hardware-Offload in FlexPath NP 

As the calculations in the previous section have already highlighted the benefits of 

the AutoRoute path in a FlexPath NP on a very high level of abstraction, I would now 

like to discuss the presented hardware-offload features offered by the Pre- and 

Post-Processor units. In order to get more precise results that also cover contention 

effects in multi-processor SoC designs with shared resource access, I will perform 

simulations that are able to capture some of the runtime effects, which are hard to 

be captured on a pure mathematical level. The following system-level simulation 

results have already been published in [82] and [83].  

3.3.2.1. TAPES Simulator for FlexPath NP 

The system-level simulations will be performed with the TAPES simulation 

framework that has been extensively discussed in [81]. TAPES is based on the 

SystemC language [8] and models the different functional entities of the system as 

abstract modules communicating with each other over defined interfaces. The 

model does not implement the functionality associated with each specific module, 

but is limited to executing traces describing the interactions of each module with the 

outside world. In this fashion, internal processing is abstracted to a simple 

processing delay, whereas the communication is performed by transactions across 

direct communication interfaces or a model of the central system bus.  

A cycle-accurate model of the IBM CoreConnect PLB bus is used in the simulation 

that resembles arbitration delays and parallel read or write transactions with address 

pipelining and burst transfers like in a real implementation. By using such a highly 

detailed model, contention effects caused when several parallel entities perform 

concurrent transactions towards the memory modules can be accurately described. 

Figure 26 shows the resulting model of the FlexPath NP. 

While the TAPES simulation framework in general allows using both artificial traffic 

and real traffic traces by importing pcap-files, only artificial traffic has been used for 

the subsequent simulations in order to better demonstrate worst case and best case 

results. 

After reception of the packets, the Buffer Manager model initiates a sequence of bus 

write accesses, modeling the DMA operation of the segmented packet. In parallel, 

the Pre-Processor model spends a processing delay determined by the packet 

length of the actual packet, in order to model parsing of the header fields. After both 

the Buffer Manager and Pre-Processor models have finished, the Path Dispatcher 

model is activated, which synchronizes the results of the two previous elements (i.e. 

the Packet Descriptor coming from the Buffer Manager and the Packet Context 

coming from the Pre-Processor). The classification function is abstracted to a few 

cycles delay, and the packets can be configured to be routed either to the CPUs or 

the Traffic Manager (i.e. AutoRoute). However, this distribution is not based on 
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actual header fields, but packets are assigned in a preconfigured sequence. The 

Path Dispatcher model also comprises the queuing models of the Packet 

Distributor, i.e. packets can be held while the processors are busy working on 

previous packets and not reacting on new interrupt notifications from the Path 

Dispatcher model. 
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Figure 26: TAPES Model of FlexPath NP 

The CPUs are executing a processing trace, which models the processing delay and 

intermittent bus accesses for both instruction fetches and packet data load 

operations. The actual trace will be based on a real-world application profiling, 

which is presented in section 3.3.2.2. 

After processing, the packets are forwarded to the Traffic Manager model that 

contains a number of output queues and performs a simple round-robin scheduling 

among packets destined to four output interfaces. The destinations are not chosen 

based on packet data, but are randomly assigned. 

The Buffer Manager model is again activated to perform the egress side DMA 

transactions and the Post-Processor model is reduced to a simple processing delay, 

consuming a number of cycles proportional to the length of the packet. 
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3.3.2.2. Calibration of System-Level Model with FPGA Measurements 

In order to calibrate the system-level simulation model with real-world measurement 

results we implemented a rudimentary network processor on a Xilinx Virtex-II Pro 

development board with the functional modules according to Figure 27. It is 

important to note that this FPGA design does not implement the full functionality of 

the FlexPath NP concept (this will be presented later in chapter 6). However, by 

using measured data concerning the DMA operations and by profiling the 

forwarding performance of a real networking stack on an embedded PowerPC 

processor, we expect to gain more accurate results than by relying on published 

benchmarking results and datasheet performance figures. 

PowerPC 405

Data/Control 
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CoreConnect PLB

Context Generation 

Engine

Pre-Processor

Buffer 

Manager Post-Processor

Gb-MAC Gb-MAC

Processor Complex Memory

I/O Module

LwIP Stack
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Controller

 

Figure 27: Calibration Prototype Implementation on a Virtex-II Pro FPGA 

The Pre-Processor extracts relevant packet fields from the incoming packets using a 

set of field extraction units that are controlled by a static FSM that provides 

appropriate control for ARP, IPv4, TCP and UDP packets. In parallel to the Pre-

Processor, the Buffer Manager [94], which is a simplified DMA engine used later as 

reference to the improved SmartMem architecture ([88], [89], [108]), splits the 

packets into 64 byte segments and stores them with a linked-list structure in the 

external SDRAM. A packet descriptor is generated that contains the pointers to the 

linked list of segments. In this stage, no Path Dispatcher and Packet Distributor 

units are available. The main purpose of the system level simulations is to 

demonstrate the expected benefits of the FlexPath NP architecture with respect to 

the hardware offload and AutoRoute scenarios. This can be achieved by statically 

assigning the traffic either to the CPU or the Traffic Manager. Instead, another 

module called Context Generation Engine [102] performs the DMA operation of the 

extracted header fields and status flags from the Pre-Processor in a data structure 

referred to as CII (Context Information Input). 
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A single embedded PowerPC is used to execute a slightly adapted form of the 

open-source lightweight IP stack (LwIP, [95]), that works together with the DMA 

offered by the Buffer Manager and may make use of the CII information generated 

by the Pre-Processor. If some of the necessary packet manipulations shall be 

performed by the Post-Processor (hardware offload), a CIO (Context Information 

Output) data structure may be added that contains the assembler-like instructions 

for the Post-Processor along with the respective data fields. 

After processing, the CPU sends the packet descriptor back to the Buffer Manager, 

which retrieves the packet and an eventual CIO from memory and transmits it over 

the gigabit Ethernet MAC through the Post-Processor.  

The FPGA development platform features an external 32 MB SDRAM memory that 

will be used for packet and context storage and the instructions for the PowerPC. 

The linked-list structures of the Buffer Manager are stored in a small on-chip SRAM 

(BlockRAM). 

The processing traces for the CPU traces have to be derived from an application 

profiling of the IP stack. In order to obtain the full instruction count for the packet 

processing functions, the interrupt service routine and all forwarding functions were 

profiled by sending a single packet through the FPGA prototype. In addition to 

stepping through the individual code lines on assembler level, an integrated Xilinx 

ChipScope Bus Analyzer core allowed recording number and frequency of cache 

line transactions of the PowerPC on the PLB bus and measuring the execution time 

of the entire packet processing routine. Table 8 and Table 9 summarize the profiling 

results. The figures in the reference solution column refer to the implemented 

version of the LwIP stack that makes use of the Buffer Manager as autonomous 

DMA engine, but the processing itself is based purely on the packet header, i.e. CII 

and CIO is not integrated into the software. As the DMA function is not performed 

by the CPU, the amount of instructions that need to be executed for each packet is 

independent of the packet size. Although implementations of the Pre- and Post-

Processor units were already available when the calibration prototype was 

generated, using the packet context had not been integrated into the LwIP stack. 

Therefore, the potential savings effect that may be achieved by performing 

operations based on the CII information (integrity checks are already performed in 

hardware) and writing a short CIO to offload checksum recalculation, TTL 

decrement and replacement of the MAC addresses to the Post-Processor have to 

be estimated. The expected figures are found in the right columns of Table 8 and 

Table 9. 
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Table 8: Profiling Results of modified LwIP Stack on Calibration Demonstrator 

Function Instruction Count (SW 

reference) 

Instruction Count 

Estimate (HW offload) 

Entry into ISR 20 20 

Data structure initialization 362 362 

Update ARP table 535 477 

Receive Integrity Checks 523 153 

Next-hop Gateway lookup & forwarding 96 86 

ARP query and packet modifications 568 470 

Transmission of packet descriptor and 

freeing of data structure 

237 237 

Function call returns and end of ISR 80 80 

SUM 2,421 1,885 

 

Table 9: CPU Execution Time and Bus Access Patterns 

 SW reference Estimate w/ HW 

offload 

Processing Delay 5,080 clock cycles 3,955 clock cycles 

Instruction Cache Fills 41 × 32B 32 × 32B 

Packet Descriptor read/write 2 × 16B 2 × 16B 

Packet Header read/write 2 × 64B -- 

Packet Context read/write -- 2 × 64B 

CIO descriptor write -- 32b 

 

The estimates performed for the hardware offload scenario show that we are able to 

save up to 22% of the originally required instructions. The major contribution (15%) 

comes from offloading the receive side integrity checks. As far as the bus 

transactions are concerned, the number of instruction cache fills is reduced 

proportionally to the number of instructions. There are only minor differences on the 

data cache operations, as fetching the CII information and writing back a CIO, 

consist of two 32 byte cache line operations each, and this is equal to accessing the 

first 64 bytes of the packet data. 

When analyzing the bus transactions for the different memory types in the system, 

we obtained single access patterns for accessing on-chip SRAM (i.e. BlockRAM) 

and an asymmetric 10-4-4-4 cycle burst read and 4-1-1-1 burst write pattern on the 

external SDRAM with the given Xilinx memory controller as PLB slave. 
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3.3.2.3. Conventional NP Reference Performance and System Scalability 

The system model is stimulated by four gigabit Ethernet interfaces, each carrying a 

load of 750 Mbit/s, such that the aggregate traffic arriving at the NP is 3 Gbit/s. This 

amount of traffic exceeds the forwarding performance of a PowerPC by far, and 

therefore allows determining the maximum throughput the investigated architecture 

would be able to deliver. 

In the following simulations, the SW reference traces are used as presented in the 

center column of Table 8 and Table 9. The simulation results for a single CPU 

running at 200 MHz, while the rest of the system is running at 100 MHz, directly 

correspond to the implementation on the calibration prototype. 
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Figure 28: SW Forwarding Performance of Reference Scenario 

The simulation results shown in Figure 28 yield a single CPU forwarding 

performance of 30.77 kpps (kilo packets per second) for 64 byte packets and  

27.99 kpps for 1518 byte packets. This compares to measurements taken on the 

prototype, which show a decline from 28.95 kpps to 23.95 kpps. While the 

simulation mismatch is only 6% for the smallest size packets, the error becomes 

larger for packet sizes beyond 256 bytes. The simulations have also been repeated 

with a dual CPU setup and scaled CPU frequencies of 250 MHz and 333 MHz.  

An interesting aspect is the scaling efficiency of the investigated system by either 

increasing the processor clock frequency or adding additional cores:  

– When a second CPU is added to the system (i.e. 100% more processing power), 

the forwarding performance increases from 30.77 kpps to 58.90 kpps, which is an 



Chapter 3 - FlexPath NP Architecture 

  99 

increase of 91.4%. The resulting scaling efficiency can be computed as 91.4%  

100% = 91.4%. 

– In turn, by accelerating the clock frequency of a single CPU by 66.5% to 333 

MHz, the forwarding performance is only increasing to 44.74 kpps, which is an 

increase of 45.4%. This results in a scaling efficiency of 45.4%  66.5% = 68.3%. 

From these results it can be concluded that increasing the number of processor 

cores is more efficient than scaling the frequency of the CPUs alone. 

In general, the decline in forwarding performance is little for small packets (i.e. small 

throughput, as the packet rate is constant) and a single CPU with a slower clock 

frequency. This result is also well expectable as the same amount of code has to be 

executed for every packet. As the packet size grows (i.e. the system throughput 

increases) or additional CPUs are added to the system (i.e. the packet rate in the 

system increases), the load on the system bus increases. This leads to more 

collisions between the different bus master modules. The longer average access 

times result in a performance degradation, especially when considering that the 

CPUs need to read 41 cache lines (i.e. 1312 bytes!) from the shared instruction 

memory while processing a single packet. These instruction fetches are also 

independent from the packet length. 

3.3.2.4. CPU Offload Performance Evaluation 

In this section, the estimated performance improvement achievable by making use 

of the FlexPath hardware offload possibilities is presented. The results of the 

conventional baseline NP simulation showed that scaling to more cores works better 

than increasing the processor frequency. Consequently, the CPU frequency is fixed 

at 200 MHz but the investigations are extended to system setups with four 

processor cores in the NP. An additional scenario investigates the effect of moving 

the software code from the SDRAM into on-chip SRAM which has a significantly 

reduced access latency. 

As I have laid out in chapter 3.3.2.2, the hardware offload available through Pre- and 

Post-Processor in a FlexPath NP allows reducing the executed number of 

instructions by 22%. This should lead to an increase of the NP's forwarding 

performance by 28% 










28.1

%221

1
. The simulation results for a single CPU exhibit 

a slightly smaller improvement by 27.5% for 64 byte packets and 24.7% for 1518 

byte packets (see Figure 29). Again, this may be explained by the fact that 

increasing bus loads lead to a deterioration of the system's overall throughput and 

stresses the fact that the commonly shared resources (bus, memory) may become 

potential bottlenecks. 
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Figure 29: SW Forwarding Performance of FlexPath NP using HW Offload 

Moving the software code from the external SDRAM memory into an internal SRAM 

increases the single CPU performance by 12.8% for 64 byte packets and even 

20.3% for the 1518 byte packets compared to the FlexPath performance with 

software being mapped to the external SDRAM. 

When scaling the processor complex to four parallel processors, another system 

bottleneck is revealed. While the scaling works quite well for smaller packet sizes, 

the forwarding rate of the 1518 byte packets is reduced to 81.6 kpps, while it is still 

above 150 kpps for the 512 byte packets. The packet rate of 81.6 kpps translates 

into a throughput of 990.9 Mbit/s, which is only one sixth of the PLB read or write 

bandwidth of 6.4 Gbit/s (64 bit bus clocked at 100 MHz). Assume only the transfer 

of packet data to and from the SDRAM memory and neglect all other transfers for a 

moment. The Buffer Manager transfers data in bursts of 64 bytes, which means 

eight consecutive accesses of 64 bits. Taking into account the memory access 

patterns for the SDRAM, such an 8 word burst can be written in 11 cycles, but it 

takes 38 cycles to retrieve the same amount of data from the memory. Multiplying 

the raw bus bandwidth of 6.4 Gbit/s with the memory read efficiency of 
38

8
, we 

receive a maximum throughput of 1.347 Gbit/s. When taking into account the other 

necessary transfers like processor instruction cache refills and fetching the CII from 

the memory (which is in case of 1500 byte packets small compared to the packet 

length), the data rate limitation at 1 Gbit/s can be explained.  
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3.3.2.5. AutoRoute Performance Evaluation 

Figure 30 shows the performance of a single CPU FlexPath NP using the hardware-

offload capabilities discussed in the previous section for CPU-destined traffic shares 

and the AutoRoute path taken by 20%, 40%, 50% and 70% of the incoming traffic. 

This performance is compared to the FlexPath NP architecture without AutoRoute 

for one, two and four CPUs as discussed in Figure 29 and the baseline conventional 

NP with a single processor. For this set of simulations, the CPU code is mapped to 

the SDRAM memory. 
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Figure 30: Forwarding Performance of FlexPath NP with AutoRoute 

Although the AutoRoute path itself should be capable of significantly higher 

forwarding rates as a single CPU, head-of-line blocking effects in the Path 

Dispatcher model disallow AutoRoute packets passing through the system while the 

buffer for CPU-bound packets is filled (backpressure).  

However, it can be seen that the forwarding performance of the system with 50% 

AutoRoute packets is 5% better than when a second CPU would be added to the 

processor complex. As the AutoRoute packets do not add to the system bus load 

by the instruction cache accesses associated with software-based forwarding, the 

performance decrease previously observed for larger packets is also less significant 

than in the previously inspected scenarios. The performance of a system with 70% 

AutoRoute and a single processor even exceeds that of a four-processor software-

only forwarding FlexPath NP for packet sizes beyond 128 bytes, with an increasing 

benefit for the larger packet sizes. 
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But AutoRoute is not only an interesting feature from the point of view of overall NP 

throughput. AutoRoute also has a latency advantage over CPU-processed packets, 

which is shown in Figure 31 below. In this simulation, the NP is not any longer driven 

into overload in order to obtain the peak system throughput; but traffic consisting of 

64 byte packets is slowly increased until the processing resources are fully utilized.  
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Figure 31: Latency Comparison CPU Path vs. AutoRoute Path 

As the processing on the AutoRoute path is accomplished in pure hardware in a 

pipelined architecture with aggregated line-speed capability, the processing latency 

is significantly lower than any CPU-based forwarding implementation could be. 

When the maximum throughput of the NP system is approached, the buffers in the 

system are filled and the latency of the individual packets rises to a level that is 

defined by the maximum buffer size. The maximum latency for CPU-bound packets 

is 9.2 ms and for AutoRoute packets it is 6.0 ms. The difference can be explained by 

the fact, that AutoRoute packets potentially get queued in the receiving MAC and 

the Buffer Manager model - CPU-bound packets have to traverse the additional 

FIFO in the Path Dispatcher model in front of the processor complex. 

The latency advantage of AutoRoute packets is however depending on the packet 

length. As it can be expected, short packets will consume only little DMA transfer 

times, and thus the resulting latency will be the lowest. The simulation results 

presented in Figure 32 show the simulated processing latencies for increasing 

packet sizes for traffic at a fixed rate of 5 Mbps, so that no queuing effects due to 

processor overload or output port contention can be observed. 
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Figure 32: Processing Latencies of AutoRoute and CPU-processed Packets over 

Increasing Packet Size 

In accordance with the results shown in Figure 31, the latencies for 64 byte packets 

are 2.5 µs for AutoRoute and 34.9 µs for the CPU path. As the packet size 

increases, we can observe a linear increase in the packet latency, which reaches 

24.7 µs for AutoRoute and 57.1 µs for CPU-bound 1518 byte packets. Here, the 

time needed to store the packet in the system memory and retrieve it from there 

approaches the processing time in the CPU, which is independent from the packet 

size for a simple IP forwarding application. Therefore, the latency advantage of 

AutoRoute packets is reduced from an order of magnitude in case of 64 byte 

packets to a factor of two for the maximum length Ethernet frames.  
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3.4. Conclusions 

In this chapter I have derived the concept of FlexPath NP based on observations 

about current networking applications. A FlexPath NP appends state-of-the-art 

network processor architectures with special hardware units for pre-processing, 

packet classification, packet sequence control and post-processing. Apart from 

offloading a central, software-programmable processor cluster with the presented 

hardware modules, a pure hardware-based processing path through the system 

called AutoRoute is proposed. 

When comparing the FlexPath approach with other architectures from the state-of-

the-art, the conceptually closest architecture is the SafeNet inline security engine 

(see section 2.1.1.2) of which first details were released about half a year after the 

first FlexPath publication ([7]). The fact that this architecture is still actively marketed 

today underlines that the concept of completely bypassing programmable elements 

for certain traffic types is a viable and successful approach. Another "close 

competitor" would be the cache-based NP proposed by Hitachi in 2006 ([34]). Here, 

the NP also possesses Pre- and Post-Processor units and a classification unit, but 

every packet of a certain stream has to go through the programmable units first, 

before they may be routed over the hardware path. In FlexPath, AutoRoute may be 

enabled for certain traffic types without the requirement of going through the 

processor complex with at least one packet per flow. 

Initial analytical investigations show the theoretical benefits of combining AutoRoute 

and software-based processing in the NP. Several examples of current networking 

applications are discussed with respect to a suitable mapping of certain traffic 

shares to either on-chip processing path. Traffic shares ranging between 20% and 

90% for different applications, which are suitable for hardware-only processing, 

make the FlexPath approach relevant enough for further investigation. 

In a next step, system simulations have been performed to further investigate the 

expected performance improvements that can be achieved with the FlexPath-

specific extensions. The simulation model, which abstracts processing to simple 

delays and transactions between the individual system modules, has been 

calibrated with a "first shot" implementation on an FPGA-based prototyping 

platform. The presented investigations suggest the following propositions: 

– Based on the application profiling results of an open-source networking stack, 

22% of the instructions could be saved by using context information (CII and CIO) 

instead of analyzing and manipulating the packet data directly. The most 

dominant relief (68% of the savings) is due to the Pre-Processor, which 

completely offloads packet integrity checks to hardware. 
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– AutoRoute packets traverse the NP with significantly reduced latency compared 

to packets being processed by the CPUs. Pre- and Post-Processors work on the 

packets on a hardware pipeline structure, such that only a few clock cycles of 

latency will be added during reception and transmission of the packet. The total 

latency of AutoRoute packets in the system is dominated by the DMA time 

required for storing and retrieving the packet in the system memory and any 

possible queuing delays associated with output port contention. As the DMA time 

is directly proportional to the packet length, the total latency of AutoRoute 

packets in contrast to CPU-bound packets varies from roughly 10% for 64 byte 

packets to 50% for 1518 byte packets.  

In addition to analyzing the benefits of hardware-offload in the FlexPath NP 

architecture, some more general results about the scaling efficiency and potential 

bottlenecks in multi-processor systems have been revealed: 

– The system interconnect and the common shared dynamic memory for storing 

packet data and processor instructions becomes the main bottleneck in a system 

with more than two processors. By providing a separate SRAM with single cycle 

access patterns for the instruction code, the performance of the system can be 

improved by an additional 13% to 21%. This roughly matches the expected 

benefits that can be achieved by the hardware-offload features in the FlexPath NP 

architecture.  

– The SDRAM packet memory was identified as an additional performance 

bottleneck. Considering the measured access patterns, the throughput of the 

demonstrator system is limited around 1 Gbit/s, although the ingress and egress 

packet processing entities would be able to process the packets with a full line 

speed of 3.2 Gbit/s assuming a 32 bit data path operated at 100 MHz. The 

performance-limiting operations are the read accesses of the buffer manager, 

which are constrained by the slow read access patterns of the DRAM. 

In summary, the achieved simulation results support the expected benefits of the 

FlexPath NP architecture. Consequently, the following two chapters focus on the 

classification problem in the ingress path of the proposed architecture and on 

advanced load balancing and QoS provisioning techniques in a FlexPath NP. 
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4. Concept and Implementation of Path Dispatcher 

The Path Dispatcher is a crucial element in the ingress data path pipeline of the 

FlexPath NP architecture and executes the most challenging task - classification of 

the arriving packet stream under hard real-time constraints and assigning them to 

an appropriate processing path. Because of the importance of the Path Dispatcher 

component, I have devoted a whole chapter for this topic, which is structured as 

follows: 

– Section 4.1 outlines the constraints of the on-chip packet classification problem 

found in the FlexPath NP and compares them to existing classification problems. 

– Section 4.2 derives the Heterogeneous Decision Graph Algorithm (HDGA), which I 

propose to solve the classification problem in the Path Dispatcher. 

– Section 4.3 presents simulation results that illustrate the performance of HDGA. 

– Section 4.4 focuses on an efficient hardware implementation of HDGA. The 

elaboration includes an extensive design space exploration and optimizations of 

the HDGA data structures that allow a more efficient implementation. 

– Section 4.5 concludes the chapter by summarizing the main characteristics of the 

HDGA concept and implementation and highlights the contributions to the state-

of-the-art in packet classification. 

The concepts of HDGA have already been published in [56] and [84]. 

4.1. Introduction and Problem Formulation 

The problem of packet classification is not new, and has gained increasing attention 

since the advent of newer QoS-sensitive applications in the Internet after the late 

1990's. In the prior art chapter 2.3, a number of hardware and software algorithms 

have been introduced, which handle the task of separating different service classes 

in networking equipment and give them an application-specific treatment with 

respect to queuing, forwarding, traffic shaping, etc.  

Our proposed FlexPath NP architecture, which improves system performance by 

provisioning different processing paths through the NP system, also requires a 

packet classification function in the ingress data path pipeline before the packets 

reach the Network Processing Complex (see Figure 23 in section 3.2). Arriving 

packets are classified according to the specific application classes they belong to 

and are then mapped to an appropriate, optimized processing path in the NP. The 

mapping should also encompass the problem of load balancing among different 

forwarding paths and multiple processors in the central network processing 

complex. While the task of the Path Dispatcher unit is formally a multi-field packet 
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classification task, it has its own domain-specific requirements and constraints, 

which differ significantly from the traditional five-tuple packet classification problem 

addressed by prior art schemes. 

In the following paragraphs, I will outline the specific environment in which the Path 

Dispatcher classification problem is situated and derive an example rule base, which 

exhibits the typical requirements found within the FlexPath NP system. The analysis 

of these requirements is then used to motivate and illustrate the derivation of the 

HDGA classification algorithm (see 4.2) and highlights the important differences to 

the problem setting in the prior art. 

As we have seen in 3.2 (further implementation details on the ingress data path 

follows in 6.2), all packets arriving from the networking or fabric interfaces pass 

through the Pre-Processor and Context Assembler units. The Pre-Processor checks 

the packets' integrity (correct packet and frame lengths, MAC and IP header 

checksums, etc.) and extracts a selection of header fields depending on the 

protocol stack of the packet. In addition, these fields are also compared against a 

given set of values and depending on the result of such comparisons certain flags 

are generated. Examples for these flags could be IPv4, Control Plane Protocol (e.g., 

ARP/RARP, ICMP, IPsec, TCP, UDP, etc.). For each incoming packet, the Pre-

Processor generates only the fields and flags present in the respective packet; this 

information is then transformed into a uniform standard representation called Raw 

Context covering all possible packet types and protocols by the Context Assembler 

unit. The Raw Context is then used in the Path Dispatcher to determine the further 

processing path of the packet inside the NP system. 

Figure 33 shows the important functional units of a FlexPath NP implementation 

with n parallel data plane processors, a single control plane CPU and a hardware 

accelerator in the network processing complex. The necessary DMA functions and 

the egress path processing elements have been excluded for clarity, as they are not 

relevant to the Path Dispatcher function. The full view of all elements is later 

described in chapter 6.2. Based on the FlexPath NP system of Figure 33, I will 

introduce an example application mix from which I derive the different processing 

paths and explain the conditions under which they will be chosen. The application 

example should give the reader a good insight into the properties and effects of our 

multi-field classification problem and may be transferred to a more general setup in 

a straightforward way. 
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Figure 33: FlexPath NP with Data and Control Plane CPUs, Hardware Accelerator and 

AutoRoute 

The FlexPath NP as described above supports the following path decisions: 

– Discard: Packets that are received with invalid checksums (e.g. Ethernet or IP 

header) are not forwarded to the processor core but may be silently discarded in 

the ingress data path pipeline. This saves both processor resources and bus 

cycles by potentially omitting the DMA in SmartMem. The path is chosen by rule 1 

in Table 10. 

– Control Plane CPU: Packets with expired TTL values may not be silently 

discarded as above, but an ICMP error message has to be generated, which is 

typically a task allocated to the control plane CPU. In addition, all packets 

belonging to the network control and management plane (e.g. routing protocols, 

SNMP, etc.) have to be forwarded to the control plane. These packets can be 

easily identified by their IP address, which must be the router's own address (i.e. 

the Own Flag will be set by the Pre-Processor). This path is chosen by rules 2 and 

5 in Table 10. 

– Hardware Accelerator: Encrypted packets of terminating tunnel connections may 

be sent directly to a decryption core before the payload can be processed 

effectively by a data plane CPU. This saves unnecessary CPU interrupts and 

increases processing efficiency. These packets may be identified by a set Own 

Flag (because the router must be the end point of the IPsec tunnel) in combination 
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with an IPsec protocol (i.e. ESP and/or AH) as layer four payload. This case is 

represented in rules 3 and 4 in Table 10. Unencrypted packets from specific 

networks that require IPsec encryption (cf. provider-based VPN services as 

outlined in chapter 2.2.3) may also be separated from the remaining traffic and will 

be guided to a specific CPU. This can effectively be seen as a hardware offload of 

the necessary IPsec SPD check to the Path Dispatcher and is reflected in rule 10 

of Table 10. 

– AutoRoute: As discussed in chapter 3.2, packets known to require only plain 

forwarding functionality can be offloaded to the AutoRoute path, if a valid next-

hop lookup result could be determined by the Pre-Processor (cf. Figure 33). Rules 

7, 8 and 9 in Table 10 allow such an offload for VoIP packets that are assumed to 

be marked with a unique DSCP value in the IP header and for plain TCP 

acknowledgment packets without further protocol payload. According to the 

specified DSCP forwarding priority, these packets are still assigned to different 

queuing priorities in the system. 

– Data Plane Processors: Essentially all remaining packets would have to be 

forwarded directly to the data plane CPU cluster. Here again, a differentiation 

according to IP DSCP field values might be useful in determining "high priority" 

processing queues and "best effort" queues. In addition, based on further details 

of the traffic, different load balancing strategies may have to be applied for 

stateful and stateless packet applications, which will be further elaborated in 

chapter 5. Rules 11, 12 and 13 in Table 10 reflect a high priority dedicated queue, 

flow-preserving hash-based assignment (e.g. HLU, see chapter 5.2.2) to a specific 

processor and best effort traffic that can be worked off by any free CPU (e.g. 

spraying, see chapter 5.2.1). 

The total number of paths that needs to be differentiated in our example is limited to 

10, assuming that two priorities (for DSCP = 0 and DSCP > 0) are available for both 

AutoRoute and data plane CPU bound packets. As the number of supported service 

classes in a specific system can scale up to ten different classes [38] and we can 

also conceive systems with several different hardware accelerators, scenarios with 

up to 30 different paths may be encountered in a generalized FlexPath NP 

implementation, but certainly not many more. 

The traffic shares that will be routed to the different functional entities (i.e. hardware 

accelerators, processors, AutoRoute) will remain quasi-static during operation of a 

system, i.e. the assignment will change only very infrequently. The assignment of 

flows to paths will change more frequently with usage statistics and traffic load 

variations during system runtime for flow-aware classification rules, which could for 

example be load balancing rules or IPsec network-specific rules (cf. rules 10 and 11 

in Table 10). 



Chapter 4 - Concept and Implementation of Path Dispatcher 

  111 

Table 10: Example Path Dispatcher Rule Base 

Rule Number / Priority Condition Path 

1 Invalid_Flag = 1 Discard (0) 

2 TTL_exp_Flag = 1 CP-CPU (1) 

3 Own_Flag = 1 AND ESP_Flag = 1 Decryption Core (2) 

4 Own_Flag = 1 AND AH_Flag = 1 Decryption Core (2) 

5 Own_Flag=1 CP-CPU (1) 

6 Ethertype != 0x0800 CP-CPU (1) 

7 DSCP=2 AND Lookup_Flag = 1 AutoRoute_VoIP (10) 

8 DSCP!=0 AND TCPAck=1 AND 

IP_Length=40 AND Lookup_Flag=1 

AutoRoute_High (11) 

9 DSCP=0 AND TCPAck=1 AND 

IP_Length=40 AND Lookup_Flag=1 

AutoRoute_Low (12) 

10 IPsec_network_hit = 1 DP-CPU 0 (20) 

11 DSCP=0 AND TCP_Flag=1 AND 

Hash(IP5Tuple)_hit=1 

DP-CPU (*Hash) (100) 

12 DSCP!=0 DP-CPU 1 (21) 

13 Default rule Any DP-CPU (30) 

 

The extracted header fields and flags that determine the processing path are 

dependent on the application. It is important to realize that not all fields are present 

in every incoming packet. As a consequence, the formulation of the individual 

classification rules will be quite heterogeneous, in contrast to the classical multi-field 

classification approaches where the Internet five-tuple of IP source and destination 

addresses, layer four port numbers and layer four protocol field are fixed inputs. For 

each path specification or classifier rule, between a single and up to four or five 

different header fields and flags may be sufficient, while the total set of possible 

fields and flags that have to be inspected over the whole range of applications can 

easily grow to an order of 20 to 30. These constraints are compared in Table 11 

below. 

Table 11: Characteristic Properties of Traditional Single-Field and Multi-Field 

Classification vs. Path Dispatcher Requirements 

 IP Next-Hop 

Lookup 

IP Five-tuple Multi-

Field Classification 

FlexPath NP Path 

Dispatcher 

Number of Rules 1,000 - 100,000 100 - 10,000 10 - 100 

Number of Actions / Paths 5 - 1,000 3 - 100 10 - 30 

Header Fields per Rule 1 5 1 - 5 

Header Fields per Classifier 

/ Rule Base 

1 5 10 - 50 
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The Path Dispatcher is to be integrated into our system-on-chip design along with 

the other NP building blocks. Consequently, it is an important constraint for the 

classification algorithm to be compact enough to fit into a small part of the available 

chip area while still achieving aggregated line speed throughput, so that the ingress 

hardware processing pipeline structure can be maintained and the packet path 

classification does not become a system bottleneck. 

As a common characteristic, the schemes proposed in the prior art are all focused 

on IP five-tuple classification or subsets thereof. The classification works always on 

a constant set of header fields and the matching conditions are either direct 

matches, range matches, prefix matches or wildcard parameters (see also 2.3.4). 

Range and prefix matches can be effectively addressed by tree or trie structures, 

however they suffer from an exponential memory size requirement, if exact matches 

have to be determined. Multi-stage approaches have been proposed (e.g. RFC, 

HyperCuts, Crossproducting, Grid-of-Tries and DCFL) that first search for matching 

entries in single dimensions and then successively combine results to compute the 

final classification output. However, a straightforward application of these 

approaches to our classification problem with 20 to 30 dimensions would not scale 

well. The implementation of 20 to 30 parallel single dimension search engines alone 

would be associated with a significant cost and it is unclear what modifications 

would be necessary, if the number of dimensions needed in the classification 

changes during system operation as a new application may be added to the current 

mix. 

In the FlexPath NP Path Dispatcher we are dealing with a much more 

heterogeneous, but also smaller multi-field classification problem (see also Table 

11). At first, much more header fields (referring to higher dimensions according to 

the terminology introduced in 2.3.2) are relevant to distinguish the appropriate 

processing path within the rule bases. However, both the number of rules and the 

possible set of destinations that have to be differentiated in a typical NP system are 

significantly smaller than the problem size faced in traditional packet classification, 

where thousands to ten-thousands of flows have to be identified and managed. In 

the foreseeable future, I don't expect the number of different processing elements to 

scale that far in single chip designs. 
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4.2. The Heterogeneous Decision Graph Algorithm (HDGA) 

As I have shown in the previous section, rule bases in the FlexPath NP environment 

have different constraints than typical five-tuple classifiers found in contemporary 

router designs. The known five-dimensional classification problem is generalized 

towards more fields and flags that are all extracted by the Pre-Processor unit. 

However, none of the rules in the classifier will specify distinct values for all of those 

fields, instead only between one and four fields are relevant for each individual rule 

(see also Table 10, Table 11).  

Especially due to the heterogeneity of the problem setting, a decision tree algorithm 

that successively checks individual header fields appears to be beneficial. As values 

in certain header fields exclude existence of further fields for the individual packet, 

one can assume to successively partition the rule base at each internal tree node 

into smaller sets of "eligible" rules until an ultimate resolution is found. Thus, the 

semantic dependencies between the different fields or flags help to reduce the 

problem size for subsequent steps. This principle can be expected to work in the 

most efficient way as long as the individual fields relevant for different networking 

applications are mutually exclusive. An additional observation concerning the 

problem setting in FlexPath NP is that in most cases the extracted header fields are 

only compared to a few distinct values. In traditional firewall applications, a 

significant share of the entire numerical range represented by these fields has to be 

regarded. In order to reduce the problem size (with respect to the number of input 

bits that need to be inspected by the classification algorithm), I propose to perform 

the comparison on the header fields and define a Boolean variable for the outcome 

of such an arithmetic operation. This Boolean variable can then be used as an input 

to a decision graph, instead of using the header fields as in HyperCuts or BDD-

based algorithms known from the prior art. 

Although the majority of the Path Dispatcher rule base consists of simple checks on 

a various number of header fields and flags, there are some exceptions to this 

general observation. One example would be the identification of potential IPsec 

packets in the traffic, where the rules may require checking the IP source address to 

a range of predefined addresses (see rule 10 in Table 10). This part requires lots of 

direct or range match operations on the IP source address field and would not be 

handled as efficiently in the decision tree structure (see section 2.3.4). Instead, I 

propose to identify these parts of the rule base, which contain a set of expressions 

on a unique header field, and evaluate them using a table lookup operation. 

Depending on the problem size, one can conceive either a direct table lookup, a 

hash table lookup (see 2.3.1.4) or calling an external search engine (see 2.3.1.5). The 

result of such a table search (i.e. successful or not) can be used to continue the 

search in the tree data structure. 
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Inspired by the contribution of Lysecky (2.3.3, [69]), a manually specified rule base 

should be minimized before starting to build the classification tree data structure. 

Concluding the above paragraphs, I devise a new classification algorithm called 

HDGA (Heterogeneous Decision Graph Algorithm) with the following characteristics: 

– Start with a manually-specified rule base containing all applications, which have 

to be differentiated in the NP system 

– Identify homogeneous parts of the rule base (i.e. many comparisons on a single 

header field / flag) and mark them for mapping into a table lookup 

– Re-formulate the rule base using a Boolean variable notation 

– Apply logic minimization to the rule base 

– Construct a binary decision tree that is subsequently transformed into a directed 

acyclic graph. The DAG consumes less memory than the original tree and the 

classification can be accelerated by introducing quaternary decision nodes. 

The resulting decision graph is a data structure that can be efficiently implemented 

in hardware and can thus achieve a high classification throughput. Results of more 

complex classification problems than the "typical" FlexPath cases can be tackled 

with established single or multi-field classifiers (e.g. NSEs) and the results are 

seamlessly integrated into the Path Dispatcher.  

4.2.1. Formulation of Rule Base using Boolean Variables 

In order to obtain a briefer representation of the rule base, the individual 

contributions in the rule base are reformulated with Boolean variables:  

– The flags generated by the Pre-Processor (e.g. "Packet Invalid", "TTL Expired", 

"Own Packet", etc.) and the outcome of (hash) table lookup operations (e.g. 

"IPsec_network_hit", "Hash(IP5Tuple)_hit") are mapped directly onto such a 

Boolean value.  

– The other contributions can be generally formulated as expressions on header 

fields with masks and arithmetic operations like equality, inequality, smaller than 

and greater than (see formalism in chapter 2.3.2, formulas 2-4 through 2-8). A 

Boolean value can then be assigned to the outcome of such an expression, i.e. 

when the expression is fulfilled by the header field extracted from the current 

packet, a 1 or "true" would be assigned, otherwise the Boolean value would 

remain 0 or "false".  

This transformation reduces the bit-width relevant for the later classification problem 

from the width of the extracted header field, which typically lies in range between 
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eight and 32 bits, to a single bit. The list of Boolean variables extracted from the 

example rule base is listed in Table 12.  

Table 12: Derivation of Boolean Variables from Expressions in Table 10 

Boolean Variable Expression Type 

A Invalid_Flag = 1 Flag 

B TTL_exp_Flag = 1 Flag 

C Own_Flag = 1 Flag 

D ESP_Flag = 1 Flag 

E AH_Flag = 1 Flag 

F Ethertype  0x0800 Expression on Field 

G DSCP = 2 Expression on Field 

H Lookup_Flag = 1 Flag 

I DSCP = 0 Expression on Field 

J TCP_Ack = 1 Expression on Field 

K IP_Length = 40 Expression on Field 

L Hash(IP5Tuple)_hit = 1 Flag, Hash-Table Result 

M TCP_Flag = 1 Flag 

S IPsec_network_hit = 1 Flag, Hash-Table Result 

 

The reduction in relevant bits by regarding Boolean variables rather than entire 

header words implies that the Path Dispatcher must contain an arithmetic logic unit 

(ALU) that computes the Boolean variable out of the header fields extracted by the 

Pre-Processor. By providing a programmable ALU rather than resorting to a hard-

wired implementation, the system as a whole gains a lot of flexibility, such that the 

architecture may easily be adapted in the field towards supporting new protocol 

stacks without needing to change the design. Provisioning such an ALU into the 

classification function is one of the differentiators between HDGA and related 

classification algorithms described in the prior art. 

In addition to providing logic that computes the Boolean variables based on regular 

expressions on Raw Context fields and flags, the ALU also supports integration of 

table lookups. Of course, table lookup operations require at least one separate 

memory access, and can therefore not be implemented in a pure combinatorial way 

as simple comparisons of Context fields. Consequently, traversal of the decision 

graph structure has to be halted for the duration of the lookup operation. In return, 

the classification algorithm has gained the flexibility to seamlessly include full-

fledged classification engine results into the architecture. 
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4.2.2. Matrix Representation of Rule Base and Pre-Processing 

The (system-operator specified) rule base is represented by a Matrix Rmanual with 

ternary contents true (1), false (0) and don't care (-). The lines or rows of the matrix 

correspond to the individual rules, while each column represents one of the Boolean 

variables. The processing path IDs, i.e. numbers representing the processing path 

associated with each rule, are summarized in vector pmanual. 
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This representation of the rule base differentiates HDGA from prior art classification 

schemes that all use one or several bits from the header fields in each decision 

node. By defining Boolean values for comparisons of whole header fields to distinct 

values, the problem size is reduced from at least 210 bits (concatenation of all 

relevant header fields and flags) to a range between 10 and 50 bits. 

We can see that certain rules have overlapping specifications that are finally 

resolved by the rule's priority, which is equivalent to its position in the rule base. 

Thus, evaluation of the rule base is dependent on the order in which the rules are 

searched with every incoming packet. In order to obtain rules that may be searched 

in an arbitrary order, I propose the following three steps: 

– Make the individual lines in the rule base independent by logical-ANDing the 

negation of higher priority rules with the current rule specification 

– Combine different rules with identical action or processing path ID and apply the 

rules of Boolean arithmetic to simplify the terms to a sum-of-products form and 

eliminate irrelevant contributions 

– Feed the resulting rule base into a logic minimization tool in order to compress the 

rule base as far as possible. For the current state of the work I have used the well-

known Espresso algorithm obtained from [71]. 
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When executing the above steps, the number of lines in the rule base are first 

increased from 13 to 27 during priority extension and then reduced to 24 during 

logic minimization. Finally, every entry in the rule base is now independent from 

each other and may therefore be evaluated in any order. The resulting pre-

processed rule base is reflected in matrix Rpp and vector ppp. 
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4.2.3. Construction of a Binary Decision Tree 

Using the rule base matrix Rpp, a heuristic method is needed to construct an 

optimized binary decision tree that evaluates the pre-processed rule base.  

The basic idea is to check one variable (i.e. evaluation of the requested expression) 

at a time in each node and then proceed to the left or right child node. In this way, 

the rule matrix is iteratively split into two sub-matrices (one for each child node) 

where entries with a zero specification for the inspected Boolean variable would be 

replicated to the left child, a one specification to the right child and don't care 

contributions would have to be replicated to both children. This replication - as 

already mentioned in [67] and [68] - may lead to an exponential blowup of the 

memory requirements of the decision tree.  
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In order to determine at each level, which Boolean variable is the best to be 

inspected next, a greedy selection process is chosen based on metrics that are 

calculated from the current node's rule matrix and the potential child matrices that 

would result from splitting the rule base at a certain variable. 

In order to achieve a more compact representation, I append the processing path ID 

vector ppp to the rule matrix Rpp and obtain the top-level rule matrix 

    
0,00,00,0

pRpRMM
pppppp
  (4-1) 

In addition, for each distinct path present in the rule base (i.e. distinct members pi of 

the vector ppp), we can define a weight factor wi. The individual wi factors may be 

summarized in the weight vector wpp=w0,0. To simplify matters, the path weights are 

fixed to be wi=1 i for the following discussion. 

For the rule matrix Mn,k, k=0..2n-1 of the current iteration level n, we derive the metric 

Pn,k, which denotes the weighted number of different paths covered by the rule 

matrix and Cn,k, which denotes the weighted number of rule contributions or rows.  

 



1..0,

,

, ikwwww

ikn

kikni

wP  (4-2) 

 



kni ww

ikn
wC

,

,  (4-3) 

In our example rule base we obtain P0,0=10 and C0,0=24 for the initial rule matrix M0,0.  

For all Boolean variables (BV) in Mn,k, we determine the potentially resulting child rule 

matrices BVkn
M

,2,1  (left child) and BVkn
M

,12,1   (right child) and calculate the number of 

paths BVknBVkn
PP

,12,1,2,1
  ,

  and contributions BVknBVkn
CC

,12,1,2,1
  ,

  covered in analogy to 

formulas 4-2 and 4-3. 

Regarding splits on Boolean variables A (first column in M0,0) and I (ninth column in 

M0,0) in the root matrix we receive after removing the respective column in the child 

matrices: 
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Now that we have calculated the Pn+1,k,BV and Cn+1,k,BV values for all possible child 

matrices of the subsequent iteration level, we have to decide, which of the Boolean 

values to use for actually splitting the rule base at level n. In the following, I will 

derive several contributions for a weighted cost function that can be used to make 

that decision. 



Chapter 4 - Concept and Implementation of Path Dispatcher 

120   

The first optimization target is to avoid an excessive replication of rules to both child 

nodes, which means trying to avoid splitting on a Boolean variable with many don't 

care values. In addition, we can focus on replication of rule contributions or 

replication of different paths. As I have mentioned before, it is not necessary to track 

the decision down to a single path contribution, the path dispatching task is 

completed when all remaining contributions point to the same destination in the 

system. The following two terms can be used as metric for the rule and contribution 

replication and yield a value of 1.0, in case no replication takes place (desired 

optimum) and are linearly reducing to 0.5, in case of a full replication (worst case, if 

the entire column consists of don't care entries):  
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A second optimization target is to achieve a well balanced decision tree, which 

could be achieved when roughly the same number of different path decisions would 

be found in both child matrices. The benefit of a balanced decision tree is that 

pathological cases, like a linear search can be avoided, and a more uniform decision 

time across all possible processing paths may be achieved. The term 
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has its maximum value of 1.0, if the left and right child matrices contain the same 

number of paths and converges towards zero with increasingly unbalanced splits. A 

value of zero is achieved, when all paths are represented in a single child and none 

in the other one. This case would however not lead to a valid decision tree and must 

therefore be excluded from the tree construction algorithm. 

In the following it is important to find out, which of the two optimization criteria 

formulated above leads to better decision trees with respect to crucial performance 

metrics such as decision tree size and average and maximum search time. The 

individual terms presented above are combined into a weighted sum, and trees can 

be constructed based on the resulting column fitness metric: 
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Let's reconsider the situation at the root node with the two columns A and I as 

described before. For a split at Boolean variable A (i.e. checking the Invalid_Flag 

from the Pre-Processor), the column fitness contributions are computed as follows: 

  









 12.01

123

24

19

1919

19

10
,0,0 A

CF  (4-8) 

As we have seen before, there is no replication in the rule base, leading to CF and 

CF terms of 1 and the asymmetrical splitting leads to a CF term of only 0.2.  

Regarding Boolean variable I, which means comparing the extracted DSCP field 

against zero, we receive: 

  









 71.093.067.0

2014

24

87

8787

87

10
,0,0 I

CF  (4-9) 

which reflects the more even split between the paths with its CF metric of 0.93, but 

the replication is punished with the CF and CF values of 0.67 and 0.71 

respectively. 

The next step is to find out practical values for ,  and , such that the resulting 

tree best achieves the requested performance criteria, namely compact storage 

space and low average and worst case search times. As it may be desirable to 

restrict the computation to integer arithmetic, large integers are used for the 

weighting factors ,  and . As the CF and CF terms are optimizing towards the 

same criterion and we focus on resolving the processing path, the CF term should 

be seen as dominant, with the CF term tipping the result into the final direction, if 

the weighted sum  CF+CF yields the same column fitness values for several 

Boolean variables. I have performed a set of simulations for different weighting 

factors on artificially generated rule bases (details on rule base generation are 

described in section 4.3), which are shown in Figure 34 and Figure 35. Across all 

simulations, is fixed at 5. 
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Figure 34: Decision Tree Size for Different - and -Weights (=5) 
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Figure 35: Maximum and Average Decision Tree Depth for Different - and -Weights 

(=5) 

The three investigated scenarios in the simulations are heavily overweighting CF 

(=1000, ==5), even weighting between CF and CF (==500, =5) or heavily 

overweighting CF (==5, =1000). When CF dominates, decision trees with 

relatively small memory footprints are obtained, but the depths are quite unevenly 

distributed. When CF dominates, the trees are better balanced, but the required 

storage space grows significantly and the worst case search time (i.e. tree depth) is 

not improving. Even worse, in addition to the largely inflated storage requirements, 

also the average tree depth obtained by equally weighting all leaf nodes in the 
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decision tree is larger than in the CF dominated trees, and the average depth is 

only marginally smaller than the worst case depth. 

From the above results I conclude that optimizing for minimum replication is the only 

meaningful approach, as both memory requirements remain within limits and a 

better average case search time can be achieved. However, CF should not be 

completely neglected, as it may still be used to determine a better choice when two 

columns share the same CF and CF metric, and cases where CF=0 have to be 

excluded. For the following parts of the chapter, I have used the column fitness 

function with =1,000, =5 and =5. Weighting of individual paths in the calculations 

of the split number of paths and contributions has not been used until now, i.e. wi=1 

i, but could be employed in order to guarantee that certain paths, which might be 

relevant for a majority of the traffic or belong to extremely critical applications, are 

evaluated faster than the remaining destinations. 

In the example rule base concerned, CF0,0,A has the largest column fitness, so that 

the root node splits the rule base along Boolean variable A. The matrices and 

metrics required for the subsequent level of the decision tree are derived as follows: 

 M1,0=M1,0,A (4-10) 

 M1,1=M1,1,A (4-11) 

 P1,0=P1,0,A (4-12) 

 P1,1=P1,1,A (4-13) 

 C1,0=C1,0,A (4-14) 

 C1,1=C1,1,A (4-15) 

Construction of the decision tree is continued in an iterative fashion on the child 

matrices as defined above. In summary, the decision tree can be constructed as 

follows: 

– 1: Obtain root rule matrix as output of rule pre-processing M0,0 

– 2: Compute P0,0 and C0,0 according to formulas 4-2 and 4-3 

– 3: Iterate over all columns in Mn,k except for the last (i.e. inspect all Boolean 

variables) and derive the two child matrices Mn+1,2k,BV and Mn+1,2k+1,BV resulting when 

the current node splits the rule base by inspecting the Boolean variable BV 

– 4: For both child matrices and every possible value of BV, compute Pn+1,2k,BV and 

Cn+1,2k+1,BV 

– 5: For every value of BV, compute the column fitness CFn,k,BV 
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– 6: Find the Boolean variable BVsplit, that yields the highest column fitness 

 0: ,,,,,,
 BVknBVknBVknsplit

CFBVCFCFBV
sp lit


 (4-16) 

– 7: Assign the chosen child matrices Mn+1,k for the subsequent iterations and 

compute their Pn+1,k and Cn+1,k values according to formulas 4-10 through 4-15 

– 8: Recursively iterate steps 3 through 7, until the tree is completely built. If a child 

matrix in any intermediate step contains only a single path ID, the path ID is 

memorized in the tree as a leaf node instead of the child pointer. 

Figure 36 shows the complete resulting binary decision tree constructed from the 

example rule base. Ovals represent the tree nodes, in which the operation 

associated with a Boolean variable according to Table 12 is evaluated. The 

rectangles represent the packet paths or action identifiers that are stored inside the 

leaf nodes instead of the pointers to further decision tree nodes. The path identifiers 

are colored differently according to the application-specific processing paths. 

  

Figure 36: Binary Decision Tree for Example Rule Base 

The resulting tree has a maximum depth of 12, i.e. 12 cycles worst case search 

latency assuming that a memory access and the comparison may be executed 

within the same cycle. This calculation neglects additional hash table lookup 
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latencies in the specially marked "L" and "S" nodes. The average depth is 8.58 and 

the tree consists of 39 nodes. Due to the locally optimal splitting metric (greedy 

selection algorithm), the order in which the Boolean variables are evaluated may 

differ in various sub-trees. In addition, it is interesting to realize that the maximum 

number of inspected Boolean variables is 12, which is two less than the total 

number of Boolean variables present in the rule base. This effect may be explained 

by the fact that the Boolean variables' values are not independent for a given 

packet. The proposed decision tree algorithm helps to evaluate only relevant header 

fields for each specified path for a distinct application and differentiates HDGA from 

methods like crossproducting ([60], [63], [65]), where all possible evaluations have to 

be made before being able to resolve the classification problem. 

4.2.4. Transforming the Tree into the HDGA Decision Graph 

Although the binary decision tree structure presented in Figure 36 could already be 

used for rule base evaluation, there is still potential for further optimizations. 
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Figure 37: Possible Decision Tree Optimizations: DAG Construction (left) and 

Quaternary Decision Nodes (right) 

Foremost, there exist several isomorphic sub-trees in the decision tree, i.e. both the 

splitting variable in the nodes and all child nodes and path identifiers are identical. In 

order to save memory for the search structure, I propose to store these nodes only 

once and redirect all child pointers of isomorphic sub-trees to the first occurrence in 

the tree. This optimization, which is also reflected in the left part of Figure 37, 

transforms the binary search tree into a directed acyclic graph (DAG), which shows 

some amount of similarity with the binary decision diagrams presented by Prakash 

et.al. in [66] (see Figure 17 in chapter 2.3.2.6).  

In their original form, BDDs are used as canonical forms of representing Boolean 

functions that perform a mapping from a multi-bit input to a single true/false value 

symbolized by exactly two terminal nodes in the graph. The requirement of being a 

function with only a single Boolean value had already been lifted by Prakash in his 
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routing table algorithm. My decision graph is used to obtain the processing path IDs 

associated with certain functional elements in our NP design, which can also be 

symbolized with integer numbers and leads to a larger set of terminal nodes rather 

than a single Boolean value. However, due to the non-uniform variable ordering, the 

constructed DAG resembles a free BDD. In addition, the operations at each node in 

the graph are not based directly on individual header bits, but may also rely on 

results of whole header field comparisons. This scheme is more effective as long as 

only a few distinct header values are relevant for larger header fields. By merging the 

isomorphic sub-trees and constructing the DAG, the number of nodes in our 

example rule base can be reduced by 7.7% to 36 nodes. 

A second optimization is conceivable, which reduces the average and worst case 

search times and thus facilitates a better scaling towards larger rule bases. By 

extending the storage space for the individual tree node entry and provisioning 

additional comparator logic for parallel evaluation of a second Boolean variable, it is 

possible to execute two decisions within a single clock cycle in a quaternary tree 

node. However, this will only be effective if the variables in both children of the 

current node are identical or contain no further splits but resolve the processing 

path (right part of Figure 37).  

I have also made experiments that try to generate a pure quaternary decision tree 

with a modified column fitness function, which attempts to optimize directly for the 

two best-fitting Boolean variables. However, these experiments did not deliver 

competitive results. In contrast, it turned out to be the better choice to construct a 

binary decision tree with the before presented greedy algorithm, and then try to 

merge nodes from two adjacent levels in the tree where possible according to the 

principle shown in Figure 37.  

An additional constraint has to be considered with respect to merging nodes that 

execute hash table lookups rather than arithmetic operations on the Raw Context 

fields. As I have mentioned before, the hash table lookups need some additional 

clock cycles for memory accesses and the evaluation of the Boolean variables in the 

ALU of the Path Dispatcher has to be stalled. In order to simplify the implementation 

of the Path Dispatcher, it appears to be reasonable to execute hash table operations 

only in binary decision nodes.  

The principle of merging several adjacent binary decision nodes into a quaternary 

decision node might be extended to even more levels, yielding 8-fold or 16-fold 

decision nodes. However, the additional cost in the hardware implementation (more 

comparators and a significantly more complex control and branching logic) is not 

justified for rare occasions where three or four nodes on consecutive levels in the 

original decision tree inspect the same Boolean variables. Such a behavior would 

contradict the properties of the free BDD structure, which is generated by our 
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heuristic splitting metric. The further parallelization would work in a straightforward 

way only for the ordered BDDs as they have been used and presented by Prakash 

et.al. [66]. However, Prakash hinted in his own work, that such an ordered BDD 

suffers from excessive memory consumption; however his proposed algorithm was 

not able to construct free BDDs. 

An important observation is that although the implementation of quaternary 

branching nodes comes at a cost of additional comparator and branching logic and 

larger memory for the quaternary tree node, the total storage space for a given rule 

base does not change: two binary decision nodes with one Boolean variable 

specification and two pointers consume as much memory as a single quaternary 

node with two Boolean variable specifications and four pointers. 

  

Figure 38: HDGA Decision Graph with Binary and Quaternary Nodes 

Figure 38 shows the final HDGA decision graph obtained from the initial binary 

decision tree by DAG construction through consolidating isomorphic sub-trees and 

merging suitable binary nodes into quaternary decision nodes. The final decision 

graph uses only 26 nodes (17 binary and 9 quaternary nodes, consuming the same 

amount of memory as 35 binary nodes). The maximum depth is reduced to nine 

levels (-25% compared to the tree of Figure 36) and the average depth is 5.61 levels 

(-35%). 

 

4.2.5. Updates of the Rule Base and HDGA Data Structures 

An important aspect in every classification algorithm is its behavior concerning 

updates of the rule base during system runtime. As the HDGA data structure 
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presented in the previous sections consists of several components, I will highlight 

the updatability of each of them separately. 

The decision tree is derived from the pre-processed rule base and the sequence, in 

which certain packet header fields or flags are inspected, is determined by a greedy 

selection algorithm that tries to optimize the storage space and search time 

complexity of the entire search structure. When new rules are added to the rule base 

that refer to a new protocol class, it is possible that the respective rules are finally 

mapped into a distinct sub-tree of the decision graph, which can be preconfigured 

into the tree memory and activated by setting a pointer in the respective parent 

node in a single atomic operation. However, due to the optimizations that are 

performed on the initial rule base, such a behavior cannot be guaranteed under all 

circumstances and it may be necessary to construct a new search graph in a 

shadow memory and then perform an atomic switch from one graph to another. This 

would pose a requirement of a sufficiently large memory in the Path Dispatcher 

implementation to allow holding several configurations in parallel. As additions of 

new protocols (with additional relevant header fields and thus new Boolean 

variables) are not very frequent, it might also be possible to assume that such an 

update could be carried out offline, while the processing elements also need to be 

supplied with new software code. 

Another situation refers to parts of the rule base that consider flow based 

specifications for certain applications (e.g. the list of currently active IPsec 

connections) or load balancing. As I have mentioned before, these rule base 

contributions are mapped to table lookup operations or even external classification 

engines. In contrast to the before mentioned decision graph, these table contents 

can be updated easily during system runtime, if the table memories are 

implemented in dual-port memory technology. 

By separating the contributions of the global rule base into quickly changing parts, 

which are mapped to lookup tables, and quasi-static parts, which are mapped to a 

decision graph data structure, the system is capable of supporting frequent updates 

of flow-aware rules (e.g. IPsec or load balancing) without hurting the overall 

classification throughput. 
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4.3. HDGA Performance and Scalability 

In order to quantify the scaling properties of HDGA and gain objective numbers for 

comparing it to schemes from the prior art, a set of simulations with randomly 

generated, i.e. artificial, rule bases of different size has been performed. These rule 

bases are then used to evaluate the range in which storage requirements and 

latencies vary. Randomly generated rules will show less statistical dependency than 

real-world rules, and therefore they exhibit less structure that may be exploited by 

both the logic minimization and during construction of the decision graph. 

The following simulation results show critical performance figures of the proposed 

HDGA decision graphs for synthetic rule bases with 10 and 20 processing paths. 

Each rule consists of the conjunction of up to four different Boolean variables in 

accordance with the observations made in Table 11 (section 4.1). The variables are 

drawn using independent uniformly random distributed variables out of a set of 

between 5 and 35 Boolean variables. Therefore, the rules do not reflect the 

correlation present in real world classifiers and offer less mutually exclusive 

structure, which can be exploited in the graph. The shares of four-variable to three-

variable to two-variable to single-variable rules are 15% to 20% to 35% to 30%. 

The individual rules are assigning the incoming packets to 10 or 20 different paths, 

which are again randomly chosen. The resulting figures present average values 

computed over 100 randomly chosen rule bases for each data point; worst case 

latencies in Figure 39 reflect the maximum depth of the worst case rule base from 

the set of 100. In general, the generated decision graphs for the synthetic rule bases 

tend to become wider and more balanced than the decision graph for the presented 

real-world example (Figure 38). 

 

Figure 39: HDGA Average and Worst-Case Search Time Performance 

The search time performance figures presented in Figure 39 show that the average 

decision graph depth (solid surface) is typically half as much as the worst case 

depth recorded for any of the simulated cases (mesh grid). In addition, the worst 
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case depth is always less than the maximum number of Boolean variables present in 

the regarded scenarios. 

 

Figure 40: HDGA Average Memory Requirements 

With respect to the memory requirements of the HDGA decision graph, an 

exponential increase can be observed with increasing number of Boolean variables 

in the rule base (Figure 40). Increasing the number of rules and keeping the number 

of Boolean variables constant leads to a smaller effect on the storage space 

requirements. The maximum storage needed for a rule base with 100 rules over 35 

Boolean variables is in the order of 750 kbit; this figure corresponds to roughly 3,600 

quaternary decision graph nodes and could be mapped into 42 BlockRAM 

memories of a current Xilinx FPGA. 

Figure 41 quantifies the effectiveness of merging isomorphic sub-trees from the 

initially constructed decision tree and obtaining a DAG. While only about 10% of the 

memory can be saved for very small rule bases on few Boolean variables, the 

compression ratio increases to about 40% for rule bases constructed with 20 

Boolean variables and to over 50% for rule bases with 35 Boolean variables. 

 

Figure 41: Memory Requirement Reduction by Merging Isomorphic Sub-Trees 
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Figure 42: Latency Reduction by Using Quaternary Decision Nodes 

An opposite behavior can be observed when analyzing the effect of using 

quaternary decision nodes in addition to binary nodes to save time (Figure 42). Here, 

the largest saving effect with roughly 30% can be observed for rule bases with very 

few Boolean variables, for problem sizes beyond 30 Boolean variables the savings 

are reduced to less than 20%. Still, 15% fewer cycles on a 30 cycle depth evaluate 

to four cycles, and four cycles can be an important contribution in deciding whether 

the resulting decision graph meets real-time requirements in the presented scenario, 

where packet inter-arrival rates are in the order of a few tens of nanoseconds in the 

worst case (see Table 6). 
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Figure 43: HDGA Decision Graph Size Scaling 

Figure 43 focuses on the scaling behavior of HDGA decision graphs with increasing 

number of rules in the rule base. The first simulation (blue line) refers to a scenario 

with 15 Boolean variables and 15 processing paths. The resulting size of the 
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decision graph is growing during addition of the first 50 rules. After this point 

increasing overlaps in the rule base lead to a saturating effect that eventually 

reduces the required amount of storage. In addition to the averaged memory 

requirements of 100 rule bases, the variation range from smallest graph to largest 

graph is shown. As the presented algorithm is highly data dependent, variations of 

up to two orders of magnitude can be observed on multiple simulation runs 

executed with the same input parameter characteristics. Still, the total amount of 

memory needed is below the (minimally) chosen memory size for the FPGA 

demonstrator (see also 4.4). 

For the larger scenario with 30 Boolean variables and 25 processing paths a similar 

behavior can be observed. Here, the saturation is reached after about 70 rules in the 

rule base and due to the more complex classification problem a higher amount of 

memory is needed. 
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4.4. Implementation Issues 

In the previous sections, I have derived the HDGA packet classification algorithm to 

solve the packet classification problem faced in the Path Dispatcher. Simulation 

results have proven the suitability of the chosen algorithm for the given task. Now, 

an efficient implementation of HDGA is needed. I will start by presenting a 

straightforward implementation of HDGA. Subsequently, I can show that a few 

changes in the algorithms' data structures lead to a significantly more area efficient 

architecture that is able to maintain maximum classification throughput and is 

adaptable to changes in the Raw Context format by simply modifying the HDGA 

memory contents. Finally, synthesis results for the Path Dispatcher unit for an 

FPGA-based demonstrator system (which will be featured in detail in chapter 6) are 

shown. 

4.4.1. Path Dispatcher Interfaces 

Before elaborating on the details of an efficient hardware implementation of HDGA, 

the following figure gives a top-level overview of the Path Dispatcher unit including 

its external interfaces in the context of our FPGA-based demonstrator platform (see 

chapter 6). 
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Figure 44: Top-Level Block Diagram of Path Dispatcher 
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On a very high level of abstraction, the architecture of the Path Dispatcher can be 

captured as shown in Figure 44. As discussed in the FlexPath concept section 

(chapter 3.2), the Path Dispatcher implements the packet classification function in 

the NP ingress data path pipeline. It receives the extracted packet header fields and 

flags from the Context Assembler unit (described later in chapter 6.2). The final 

classification result is in turn handed over towards the SmartMem DMA engine and 

further downstream processing pipeline stages.  

The Raw Context is transferred in the data processing pipeline in parallel to the 

packet data on a 32 bit data path that achieves the same throughput as the packet 

data. However, while packets may have largely varying lengths (in case of Ethernet 

this ranges from 64 bytes to 1518 bytes), the context is fixed for our implemented 

protocol range to 14 words, which is less than the minimum Ethernet frame size of 

16 words. Thus, the transmission of packet context is real-time capable for all 

possible packet arrivals. In addition, the 16 word minimum frame size can also be 

translated into a 16 clock cycle limit for hard real-time guarantee of the HDGA 

classification algorithm, i.e. for any arriving packet pattern, real-time constraints are 

met if the deepest HDGA graph can be worked off within 16 cycles. 

The classification algorithm needs to have random access to all context fields and 

flags, i.e. classification can only be started, when all fields of the current packet 

have arrived in the Path Dispatcher. This requires at least a double buffering 

structure (see Context Memory in Figure 44), where one context can be received 

from the Context Assembler, while the second context is used for packet 

classification. However, if a larger buffer would be implemented, it is also possible 

to allow a more relaxed timing for average case situations, where classification of a 

single packet type may take longer than the previously described 16 cycle limit, if 

such a packet is either followed by a larger packet, or subsequent packets are 

classified in less than 16 cycles. This would also be interesting in cases, where the 

classification takes less time than the 14 cycles needed to transfer a single packet 

context from the Context Assembler to the Path Dispatcher. A larger buffer may be 

pre-filled and the backlog can be worked off when an arriving packet leads to a 

shorter than worst-case decision graph. Assuming average case latencies and 

average packet size in realistic traffic mixes, a good classification performance may 

still be achieved also for significantly larger problem sizes. The simulation results 

presented in Figure 35 and Figure 39 suggest that the average-case graph depth in 

HDGA is on average between 50% and 80% of the worst-case depth. 

At the heart of the Path Dispatcher the HDGA classification algorithm has to be 

implemented. The relevant context words for the current decision graph node have 

to be transferred to two ALUs, which each compute the current Boolean variable by 

masking the context word and performing a comparison against the predefined 

value. The Boolean variables are then forwarded to the Classification Controller 
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state machine, which selects the next-level decision graph node or concludes the 

search process, if the final classification result is resolved. In order to achieve the 

highest possible classification speed, this calculation has to be performed within a 

single clock cycle. The Graph Node Memory, which contains the HDGA data 

structure, acts as register stage in an otherwise entirely combinatorial data path. In 

addition, Hash Table lookups can be initiated from the Classification Controller. 

Hash Table lookups require an additional memory access (apart from accessing the 

Graph Node Memory) which can not be reasonably assumed to be performed within 

the same clock cycle as the calculation of the Boolean variables and the resulting 

child node pointer. In addition, treating the hash table lookup as an additional 

functional element with its own clocked interface allows to integrate the results of 

other (possibly off-chip) classification engines for full-fledged five-tuple classification 

into the Path Dispatcher design. 

The decision graph algorithm will at first only provide an ActionID, which determines 

the further processing in the device. As downstream elements need more precise 

information like queuing priority, processing latency class, queue ID for the Packet 

Distributor and information about whether CII or CIO has to be generated for the 

current packet, an additional lookup in the Translation Memory is used to retrieve 

this kind of information. Storage of a new Raw Context arriving from the Context 

Assembler and performing the lookup in the Translation Memory plus the 

handshaking with the SmartMem unit can be performed in separate pipeline stages 

overlapping the actual HDGA classification task. 

The individual processing stages of the ingress NP pipeline use a simple 

handshaking protocol with Ready / Start signals in order to pass control over the 

individual packets from one stage to another and provide a backpressure 

mechanism for accommodating different processing latencies between the 

individual stages. 

4.4.2. Design Space Exploration for HDGA Implementation 

4.4.2.1. Constraints on HDGA Graph Evaluation 

Before deciding on an implementation of the buffers and the precise structure of the 

HDGA core, consider the decision graph data structure and the classification 

process under the assumption of a single clock cycle per decision tree node. A tree 

structure, as well as the presented decision graph, may be constructed from 

recursively chaining the individual nodes with data fields as presented in Figure 45. 
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Binary Node (93 bit):

CTX_A (4 bit)

Mask (32 bit)

Value (32 bit)

Operation (3 bit)

Ptr/Action0

(11 bit)

Ptr/Action1

(11 bit)

Quaternary Node (186 bit):

CTX_A0 (4 bit)

Mask_0 (32 bit)

Value_0 (32 bit)

Operation_0 (3 bit)

Ptr/Action00

(11 bit)

Ptr/Action01

(11 bit)

CTX_A1 (4 bit)

Mask_1 (32 bit)

Value_1 (32 bit)

Operation_1 (3 bit)

Ptr/Action10

(11 bit)

Ptr/Action11

(11 bit)  

Figure 45: Straightforward HDGA Node Contents 

The HDGA nodes can be logically separated into two parts: 

– The first part contains information about how to compute the Boolean variable 

within each stage. This includes a reference to the relevant context word (4 bits 

are needed to address the 14 words of the Raw Context), 32 bit values for 

defining a mask and comparison value and three bits for selecting the appropriate 

comparison within the ALU. The ALU itself supports equality, inequality, greater 

than and less than comparisons, an additional combination is necessary to 

encode a hash table lookup or invocation of external multi-field classification 

engines. 

– The second part contains the pointers to the two or four child nodes for all 

possible combinations of the single or two calculated Boolean variables. If the 

node is a leaf node, the child pointer (which would be NULL in this case) can be 

used as ActionID consuming the same space as the child pointer. For the 

prototypic implementation I use 10 bits as pointers or ActionIDs, which allows 

supporting rule bases with up to 1k nodes. An additional bit is used to 

differentiate between pointer and ActionID, thus identifying (partial) leaf nodes. 

Summing up all the fields mentioned before, we receive a binary node structure of 

93 bits and a quaternary node structure of 186 bits. In the final implementation it is 

beneficial to provision a Graph Node Memory that can hold a quaternary node in a 

single physical word. At the same time, each word can then also be used to store 

two binary decision nodes, with an additional bit signaling to the Classification 

Controller whether the current memory word contains a single quaternary or a pair 

of binary nodes. The logical addresses used in the child pointers would enumerate 

binary nodes as elementary elements and the least significant bit is not forwarded to 

the address lines of the Graph Node Memory. Quaternary nodes have to be 

assigned to full words, i.e. only even logical addresses. 

The main classification routine can now be seen as a combinatorial logic loop, 

where using the context address field from the node structure one of the fourteen 

context words is selected. Operation, mask and value are fed into the respective 

ALU instances and the Boolean outcome of the comparison may be computed. The 

result now has to be analyzed by the Classification Controller FSM that computes 



Chapter 4 - Concept and Implementation of Path Dispatcher 

  137 

the address of the subsequent tree node or terminates the classification and initiates 

the Translation Memory lookup in the next cycle. In case of a hash table lookup 

instead of a simple comparison operation, the decision graph classification has to 

be interrupted and the Hash Table Lookup module will be started over the defined 

interface. 

It is the goal of the design space exploration to find an architecture of the Path 

Dispatcher that achieves maximum HDGA throughput while minimizing the resource 

consumption in the FPGA environment for the FlexPath NP demonstrator. The basic 

assumption is that such an efficient architecture would also be a reasonable choice 

for ASIC implementation, although a standard cell design offers more flexibility 

especially regarding the availability of custom-sized SRAM blocks. 

In order to compare different architectural alternatives, an estimation of the area 

consumption (for both memory elements and logic) has to be performed. Memory 

and register sizes can be easily derived, when the dimensions are known by 

synthesizing a suitable core using the Xilinx CoreGenerator tool. In addition, the 

ALU, which performs the calculation of the current Boolean variable based on the 

currently selected Raw Context field and the parameters obtained from the Graph 

Node Memory, can be easily modeled in VHDL and synthesized using the standard 

ISE tool chain. The situation is a little bit more complex for the Classification 

Controller that essentially consists of a large FSM that controls the traversal of the 

HDGA data structure. Therefore, I have only performed an estimate of the area 

required for the different multiplexers that split the HDGA data structure into its 

components and drives the data chunks to the correct functional unit (e.g. the Mask, 

Value and Operation fields to the ALUs, etc.). The resulting area was determined as 

334 slices per ALU, i.e. for a Path Dispatcher with two ALUs (which support 

evaluating two Boolean variables for a quaternary node in a single cycle) the area 

estimate is 668 slices. Area requirements for static parts like the LIS-IPIF bus 

attachment, which is needed for (re-)configuring the Path Dispatcher, the Hash 

Table Lookup engine and handshaking logic with up- and downstream pipeline 

elements have been neglected. 

Based on the above described area estimates, architectural alternatives will be 

evaluated in order to obtain the smallest possible solution under the given 

constraints. The results for all further investigated architectures are summarized in 

Table 16 on page 143. 
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4.4.2.2. Path Dispatcher Architecture A 

Architecture variant A is based on a straightforward implementation of HDGA based 

on the tree node structure presented in Figure 45 and the Path Dispatcher interfaces 

shown in Figure 44. 
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Figure 46: Path Dispatcher - Architecture A 

Architecture A1 uses a single BlockRAM instance as Context Memory, which allows 

storing 32 packet contexts with 16 words per context. While the context is written 

into the memory from the Context Assembler unit, it has to be fetched into the 

Register File by a Context Prefetch unit, which has not been included in the area 

estimation. If the entire packet context of 14 words needs to be copied, each 

register file will need 448 bits or 224 slices. The Graph Node Memory can be 

constructed by chaining several BlockRAM instances in parallel in order to obtain 

the required data width of 187 bits (see Figure 45 and include one bit to distinguish 

binary and quaternary nodes). This can be achieved with 6 parallel BlockRAMs 

offering 192 bits using the 512x32 primitive. The Translation memory will be 

implemented in Distributed Memory technology, i.e. using the LUT resources within 
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the FPGA as memories, because of its dimensions. The word width of 45 bits would 

require using two BlockRAM resources in parallel, but the associated depth of 512 

entries, i.e. 512 processing paths is beyond the need for the demonstrator 

implementation. Distributed memory can be parametrized in single bit width 

increments at multiples of 16 words deep. I have chosen a depth of 64 entries, i.e. 

supporting a maximum of 64 processing paths as a suitable implementation for the 

demonstrator. The resulting total area for this solution without the Context Prefetch 

and Hash Table Lookup units would therefore be 1,388 slices and 7 BlockRAMs, 

equivalent to 5.5% of the slices and 3.0% of the BlockRAM resources of the used 

Xilinx Virtex-4 FX 60 FPGA. 

Architecture A2 would slightly improve the logic resource consumption by 

compressing the fields in the Raw Context provided by the Context Assembler, as 

not every extracted field or flag consumes the full 32 bits of each word (cf. structure 

of the Raw Context in Figure 88 in the Appendix section). When also ignoring the 

two fields that contain the result from the next-hop lookup engine; only 210 bits out 

of the remaining 12 context words are relevant for the supported networking 

applications. The total area consumption can be reduced to 1,150 slices or 4.5% of 

the FPGA. While this compression may appear lucrative from the area consumption 

standpoint, it has to be pointed out that in turn a lot of flexibility is lost with respect 

to changing the order in which certain header fields and flags are appearing in the 

context. The larger implementation of architecture A1 would make it possible to 

replace any context field from the currently used set with another protocol field and 

the uniform access in 32 bit words would allow to include additional protocols by 

simply changing the field address in the Graph Node Memory. In other words, a 

plain control plane update of one configuration memory within the Path Dispatcher 

unit is sufficient to support in-the-field changes in the supported networking 

protocols. 

Table 13: Area Estimates for Path Dispatcher Architecture A 

Architecture Unit FPGA Slices FPGA BlockRAMs 

A1 Context Memory 

Register Files 

ALUs + CC Multiplexers 

Graph Node Memory 

Translation Memory 

TOTAL 

0 

448 

668 

0 

272 

1,388 

1 

0 

0 

6 

0 

7 

A2 Context Memory 

Register Files 

ALUs + CC Multiplexers 

Graph Node Memory 

Translation Memory 

TOTAL 

0 

210 

668 

0 

272 

1,150 

1 

0 

0 

6 

0 

7 
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4.4.2.3. Path Dispatcher Architecture B 

Architecture B1 (see Figure 47) tries to eliminate the two parallel register files by 

instantiating a wide Context Memory, where the entire packet context can be stored 

in a single word using distributed memory technology. The multiplexers in the ALU 

can then access the entire context and the Context Prefetch unit can be eliminated. 

In turn, the packet context arriving from the Context Assembler has to be converted 

to the wider data path width by means of an additional serial to parallel converter 

(SPC), which can be implemented as a single shift register of 512 bits length. Similar 

as in other units (see chapter 6.2), the Context Memory holds up to 16 packet 

contexts. As the memory is quite shallow, distributed RAM appears to be a 

reasonable choice, however the estimated figures show a high area cost of 1,708 

slices (6.8%) and 6 BlockRAMs (2.6%). 
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Figure 47: Path Dispatcher - Architecture B 

As an alternative, the Context Memory could be implemented using BlockRAM 

memories that can also be configured with variable read and write data widths. 

Thus, the need for the SPC could be eliminated by instantiating an asymmetrical 

BlockRAM core with 32 bit write interface and 512 bit read interface (Alternative B2). 
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The total system cost estimate evaluates to 940 slices (3.7%) but consumes 22 

BlockRAMs (9.5%), which are for the most part only sparsely utilized. 

Table 14: Area Estimates for Path Dispatcher Architecture B 

Architecture Unit FPGA Slices FPGA BlockRAMs 

B1 SPC 

Context Memory 

ALUs + CC Multiplexers 

Graph Node Memory 

Translation Memory 

TOTAL 

256 

512 

668 

0 

272 

1,708 

0 

0 

0 

6 

0 

6 

B2 Context Memory 

ALUs + CC Multiplexers 

Graph Node Memory 

Translation Memory 

TOTAL 

0 

668 

0 

272 

940 

16 

0 

6 

0 

22 

 

4.4.2.4. Path Dispatcher Architecture C 

As we have seen, there exists a fundamental tradeoff in the Path Dispatcher 

architecture exploration between small area consumption (both by means of logic 

slices and embedded SRAM blocks), generality and extensibility of the design 

towards future protocols with different context formats and ease of implementation, 

where complex control and prefetching logic might be eliminated by a simple shift 

register or a wider memory block. Architecture B2 is the most resource efficient 

implementation by means of slices and is extensible to rearranged packet contexts 

in a straightforward fashion, but more than twice the amount of embedded SRAM 

blocks are needed - measured in percent of the resources offered by the targeted 

FPGA device - than for the remaining logic. In order to work off a decision graph 

node in a single clock cycle, it is necessary to be able to access the entire range of 

context words in a parallel fashion. As we have seen before, this can be achieved by 

using either a set of registers or a wide memory.  

Still, as we need at most two different context fields in every classification cycle, it 

might be more efficient, if we could read the required words directly out of a 

(narrow) memory block. This can be achieved with high performance, if the format of 

the decision graph nodes is rearranged as shown in Figure 48. 

Essentially, the address of the context word involved in computing the Boolean 

variable is moved from the node part into the pointer part of the graph node data 

structure. In addition to specifying the pointers, i.e. address of the subsequent node, 

the address of the upcoming context word is specified for both possible outcomes 

(0 or 1) for the binary node. With this information, the address may be routed to the 
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Context Memory at the same time as the Graph Node Memory address, and both 

the mask/value information as well as the correct context field is available in the 

subsequent clock cycle. As it is necessary to include two addresses for binary 

nodes and four addresses for the quaternary nodes, the size of the graph node entry 

rises to 105 or 210 bits respectively. The resulting 211 bit wide Graph Node Memory 

can however still be implemented with a chain of six BlockRAM memories, when 

selecting the 512x36 primitive and using the parity check bits as additional data bits. 

Binary Node (105 bit):

Mask (32 bit)

Value (32 bit)

Operation (3 bit)

Ptr/Action0

CTX_A0_0

CTX_A0_1
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Mask_0 (32 bit)

Value_0 (32 bit)
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CTX_A00_1

Ptr/Action01

CTX_A01_0

CTX_A01_1

Mask_1 (32 bit)

Value_1 (32 bit)

Operation_1 (3 bit)

Ptr/Action10

CTX_A10_0

CTX_A10_1

Ptr/Action11

CTX_A11_0
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Figure 48: Optimized HDGA Node Contents 
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Figure 49: Path Dispatcher - Architecture C 
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As shown in Figure 49, the Context Memory can now be implemented with two 

parallel instances of a single BlockRAM memory that allows storing 32 packet 

contexts with 16 words each or 16 contexts (as used in other processing pipeline 

elements) and up to 32 words. There is no need for additional prefetching logic and 

the next context word addresses are provided by the Classification Controller out of 

the Graph Node data structure. The multiplexers previously required in the ALUs can 

now be saved. An additional set of registers is necessary to define the context fields 

required for evaluating the root node; this initial access is performed in parallel to 

fetching the root node information from the Graph Node Memory. The total area 

estimate is now reduced to only 872 slices (3.4%) and 8 BlockRAMs (3.4%), so 

Architecture C is also a very balanced solution. In addition to being the smallest 

possible solution, a lot of freedom is retained that allows easily changing contents 

and formats of the packet context without needing to redesign the Path Dispatcher. 

Table 15: Area Estimates for Path Dispatcher Architecture C 

Architecture Unit FPGA Slices FPGA BlockRAMs 

C Context Memory 

ALUs + CC Multiplexers 

Graph Node Memory 

Translation Memory 

TOTAL 

0 

600 

0 

272 

872 

2 

0 

6 

0 

8 

 

Table 16 summarizes the estimates of the resource utilization for the different 

presented architectural alternatives for the HDGA graph evaluation logic.  

Table 16: Estimated Resource Requirements of Various Architecture Alternatives 

Architecture FPGA Slices FPGA BlockRAMs Share of slices Share of BRAMs 

A1 1,388 7 5.5% 3.0% 

A2 1,150 7 4.5% 3.0% 

B1 1,708 6 6.8% 2.6% 

B2 940 22 3.7% 9.5% 

C 872 8 3.4% 3.4% 

 

Architecture C is finally chosen to be implemented in the FPGA prototype as it 

achieves the desired functionality with the least amount of resources and provides a 

good balance between logic elements and memory primitives. 



Chapter 4 - Concept and Implementation of Path Dispatcher 

144   

4.4.2.5. Hash Table Lookup 

As described in chapter 4.2, there are two cases for which hash table lookups are 

needed in HDGA. The first application is distribution of stateful processing loads 

among several parallel processor entities, which is discussed in further detail in 

chapter 5.2. Here, packets are assigned to specific processors by performing a 

lookup using a hash value of the packet's Internet five-tuple. A complete list with all 

possible hash values must be maintained along with the corresponding processing 

path assignment. The second application is matching a certain header field against 

a larger set of distinct values, which is too large to scale efficiently in the decision 

tree structure. Here, a hash table lookup with a possible collision resolution scheme 

is required and performs significantly better than working off an exponentially sized 

decision graph over several clock cycles. 

Based on the previous observations, a simple generic table lookup engine can be 

implemented in a straightforward fashion that allows performing direct and hash 

table lookups with an optional collision resolution scheme. As the table lookups 

involve accessing at least the additional table memory, and an asynchronous 

memory access would significantly deteriorate the length of the combinatorial path 

delay in the HDGA decision graph traversal block (see Figure 49), the table lookup 

will be included in a separate entity with a defined synchronous handshaking 

protocol interface. In addition, it is then also possible to replace the table lookup 

function as implemented in the Path Dispatcher prototype with any other external 

classification engine like e.g. an NSE. 
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When the Classification Controller of the Decision Graph Traversal unit detects the 

table lookup Opcode in the current graph node, the (masked) 32 bit wide context 

field is forwarded from the ALU to the Table Lookup Unit, and the lookup is initiated 

by asserting the HashTable Start signal. The table lookup module supports several 

tables in parallel, so important information like whether the requested lookup is 

direct or hashing based, the key width (which is directly related to the logical 

address width of the lookup table) and the base address of the lookup table in the 

physical table memory is obtained from a configuration memory. In the subsequent 

clock cycle, the masked field may be hashed, using a 16 bit CRC function, is 

truncated to the specified key length and the initial lookup address is calculated by 

adding the key to the table base address. If a direct lookup or a hash table lookup 

without collision resolution is requested, the lookup result can be communicated 

back to the Classification Controller in the subsequent cycle. If a hash table lookup 

with collision resolution was necessary, the original context field is compared to the 

value stored in the hash table. If they correspond, the result may also be 

communicated to the Classification Controller. If they don't match, a simple chaining 

mechanism is provided in the table lookup unit, i.e. the Table Lookup Controller 

obtains the chaining pointer from the hash table entry and performs another lookup 

in the following cycle. This may be continued until either the correct key entry was 

found or the end of the chain of entries is reached. 

4.4.3. FPGA Implementation Results 

The Path Dispatcher has been implemented in the way derived above on our Virtex-

4 FX60-based FPGA development platform, which will be discussed in detail in 

chapter 6.1. In the following, I would like to briefly highlight the final synthesis results 

for the Path Dispatcher as a standalone element; cumulative figures for the entire 

prototype platform are deferred to chapter 6. Table 17 lists the synthesis results of 

the Path Dispatcher implementation according to Architecture C and including the 

Hash Table Lookup module as described in 4.4.2.5. Figures for the LIS-IPIF [99] 

needed in the final system as PLB bus master attachment are excluded. However, 

the logic in the synthesized core includes the bus attachment FSM implementing the 

LIS-IPIC control signals between the Path Dispatcher core and the LIS-IPIF slave. 

Table 17: Stand-alone FPGA Synthesis Results for the Path Dispatcher 

Resource Type Resource Quantity 

FPGA Slices 1,368 of 25,280 (5.41%) 

 Slice Flip-Flops 368 of 50,560 (0.73%) 

 Slice LUTs 2,450 of 50,560 (4.85%) 

FPGA BlockRAM memories 16 of 232 (6.90%) 

Critical Path 8.971 ns (i.e. 111.473 MHz) 
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Concerning real-time capabilities of the current implementation, the following timing 

behavior has to be considered: 

– If the rule base can be mapped exclusively on the decision graph structure of 

HDGA, the classification within the ingress processing path pipeline is real-time 

capable, if the maximum depth of the graph is 15. As already discussed in section 

4.4.1, the shortest inter-arrival time between two consecutive packets is 16 

cycles, and one cycle is necessary for accessing the first Raw Context word and 

HDGA root node information, before the actual graph traversal starts.  

– The currently implemented Hash Table Lookup engine consumes three cycles in 

non collision-resoluted operation, which reduces the maximum graph depth by 

two additional cycles for each hash table access. The implemented chaining 

mechanism increases the consumed cycles by one for every additional collision. 

As I have shown in section 4.3, a HDGA tree depth of 10 to 15 nodes is already 

enough for a significant range of relevant scenarios. However, depending on the 

actually configured rule base, the decision graph may become deeper. In order to 

tackle the problem of deeper graphs or to enable rule bases with several table 

lookup operations, it is possible to introduce pipelining into the architecture of the 

Path Dispatcher. 

A pipelined version of the Path Dispatcher would need to replicate Context 

Memories, ALUs, Classification Controllers and Graph Node Memories. The first 

stage would remain unchanged from the current implementation and traverses the 

first 15 cycles of the HDGA decision graph. In its last cycle, the root node of the 

next-stage HDGA graph would have to be communicated to the subsequent 

pipeline stage along with the next context memory pointers. Starting with this 

information, the subsequent pipeline stage may work off the remainder of the graph. 

By provisioning two pipeline stages, the maximum depth constraint can be raised to 

30, which is sufficiently large to work off all problem sizes investigated in the context 

of this thesis as shown in Figure 39. 
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4.5. Conclusions 

In the present chapter, I have introduced HDGA as a new, modular packet 

classification algorithm tailored for the specific environment faced in the path 

dispatching problem within a FlexPath NP. However, the classification scheme may 

also be easily applied to more general on-chip path selection or task assignment 

functions relevant in modern multi-processor SoCs designs. HDGA is a hybrid 

approach that combines a decision graph classifier with table lookups. Various 

optimization goals for constructing the decision graph have been proposed and 

evaluated. Heterogeneous parts of the rule base are dealt with in the graph 

structure, which is constructed optimizing for compact implementation and short 

average search times. Homogeneous and potentially quickly changing parts of the 

rule base are mapped to table lookups (which may be either direct table lookups or 

hash table lookups depending on the actual situation) or other specialized 

classifiers, e.g. off-chip TCAM-based NSEs. 

Before the decision graph is constructed, the classification rule base is minimized 

using techniques from logic synthesis and isomorphic sub-trees are merged into a 

single instance in order to save memory without hurting lookup performance. In 

order to further accelerate the classification process, binary decision nodes from the 

graph are merged into quaternary decision nodes where possible. 

 

Figure 51: Throughput Performance of HDGA vs. Several Prior Art Schemes 

Throughput and storage requirements of the proposed HDGA classification scheme 

(obtained from simulations described in 4.3) are compared to published 
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performance figures quoted for classification schemes from the prior art in Figure 51 

and Figure 52. 

 

Figure 52: Storage Requirements of HDGA vs. Several Prior Art Schemes 

The published performance figures by Woo [68] refer to a software implementation, 

while Taylor [65] and Prakash [66] describe an ASIC concept; thus these figures are 

hard to compare directly to our FPGA targeted implementation. Cohen [67] only 

states performance figures by means of tree nodes and memory accesses, so I had 

to estimate the performance by means of bytes and packets per second for 

inclusion into Figure 51 and Figure 52. In accordance with the derivation of tree 

node sizes by Woo in [68], I favorably assumed one node to consume only 10 bits, 

and considered a range of 10 ns to 30 ns for a memory access. 
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5. Multi-Processor Load Balancing in FlexPath NP 

5.1. Introduction 

The FlexPath NP I have derived in chapter 3.2 features a network processor 

complex with parallel CPUs or processing elements (PE). Parallelization of the 

incoming packets onto several processing entities is necessary in order to meet the 

processing requirements imposed by the networking applications on the network 

processing infrastructure. A fundamental problem faced by every parallel compute 

architecture is the problem of load balancing, which will be investigated in the 

context of FlexPath NP in the subsequent sections. 

The problem of load balancing is not new, and several schemes that deal with the 

load balancing problem in the context of network processing have been discussed 

in chapter 2.4. However, a FlexPath NP features a Pre-Processor and Path 

Dispatcher in an ingress processing pipeline in order to provide different processing 

paths for various networking applications. These capabilities, which allow different 

treatment for packets of different traffic classes, should in the following be used for 

load balancing. After all, solving the load balancing problem is effectively making a 

decision on the further processing path of the arriving packet. Therefore, the Path 

Dispatcher of a FlexPath NP is the straightforward instance, onto which the load 

balancing function should be mapped.  

The Path Control, which is covered in detail in Michael Meitinger's dissertation [107], 

solves the problem of packet reordering in FlexPath, which has also been given an 

important focus in the prior art schemes for NP load balancing. Therefore, we have 

investigated how the specific functional enhancements in the NP system can be 

exploited to further optimize the NP system performance with respect to satisfying 

QoS requirements and maximizing the individual processing element utilization. 

Our approach to the load balancing problem is driven by the following question: 

What would be the optimum load balancing strategies with respect to overall system 

utilization, minimum packet loss rates and processing latencies when considering a 

heterogeneous application mix with different QoS requirements?  

As the different application classes can be identified within the FlexPath ingress 

processing pipeline, it is possible to apply different load balancing strategies for 

different application types. This can be seen as a straightforward utilization of the 

functionality offered by the proposed network processor architecture, but such a 

strategy has not been investigated by other researchers before. In accordance with 

the findings in chapter 2.2.7, we have focused our efforts on stateful and stateless 

network processing applications and use QoS-aware IP forwarding (see chapters 

2.2.1 and 2.2.2) and IPsec encryption (see chapter 2.2.3) as representative examples 
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for the more general application classes. After identifying load balancing techniques 

that are well suited for each individual application class, we propose a combination 

of the two most promising techniques in systems that process a mix of stateful and 

stateless traffic classes. The most important concepts and results described in 

detail in the following parts have already been published in [72]. 

Section 5.2 presents the individual load balancing techniques for stateless and 

stateful network processing applications. In addition, a combination of two specific 

techniques is proposed for system scenarios that process different application 

classes at the same time. Section 5.3 evaluates the performance of the proposed 

load balancing techniques and compares them to the performance of prior art 

solutions by functional simulation of a parallel processor cluster NP architecture. 

Finally, the chapter is concluded in section 5.4. 
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5.2. Load Balancing Strategies for Different Application 

Classes 

5.2.1. Stateless Network Processing Applications 

In the following discussions, we distinguish two different traffic types within the 

class of stateless networking applications: best effort traffic (referred to as BE in the 

following), which is the bulk of Internet traffic being forwarded without any QoS 

provisions or guarantees, and DiffServ high priority traffic (referred to as QoS in the 

following) where a DSCP other than zero defines an application-dependent per-hop 

forwarding behavior that has to be applied to the respective packet stream. In our 

example, we will simply provide a higher processing and output port queuing priority 

to such packets. 

We propose to use a slightly modified form of packet spraying (definition see 

chapter 2.4.2) for all stateless traffic classes. In order to implement the requested 

QoS behavior, it is possible to provide separate queues for each DSCP value and 

provision separate queue servicing schemes in order to achieve the requested per-

hop forwarding behavior in the NP. The idea behind implementing a packet spraying 

approach is that the packets will experience optimum processing by the PE cluster 

as we can exploit a pooling gain from distributing the packets over a multitude of 

PEs. In contrast to the spraying mechanism as described by Dittmann in [73], we do 

not maintain a single queue in front of each processor, into which the packets are 

sprayed. The spraying is performed in the Packet Distributor (details see Michael 

Meitinger's dissertation [107], chapter 5) out of a single queue per traffic class, 

which is shared among a configurable set of PEs that are responsible for processing 

this traffic. As long as a packet sits in the queue, an interrupt will be forwarded to all 

PEs associated with the respective traffic type. The interrupt priority for the QoS 

queue will be higher than that for the BE traffic. When a PE is busy with processing 

a packet, it will mask all its interrupts, so that only idling processors will react to the 

interrupts. 

As a consequence of the statistical distribution of packets a well-balanced 

distribution of the load among all involved PEs can be expected, and each arriving 

packet will experience the shortest possible waiting time until it gets serviced. The 

modified spraying technique avoids head-of-line blocking effects associated with 

queues that are dedicated for individual PEs and also reduces packet reordering 

probabilities in comparison to Dittmann's spraying, as packets may only experience 

varying processing latencies, but not different queuing delays. Of course, it is not 

guaranteed that packets from the same traffic flow are processed by the same 

processor, which is acceptable as long as no shared state information is required for 

packet processing. The resulting higher packet reordering rates in comparison to 
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the hashing-based dedicated flow assignments are eliminated in a FlexPath NP by 

the Path Control unit before the packets reach the output buffers of the NP. 
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5.2.2. Stateful Network Processing Applications 

While packet spraying is a good solution for the stateless network processing 

applications, it is ill-suited for stateful processing due to the consistency and 

performance implications arising when state information is distributed among 

several parallel processing entities. Stateful flows are more efficiently processed on 

a single dedicated PE that can hold a local copy of the required processing state. In 

case that the aggregate of flows that are assigned to a single PE exceeds the overall 

processing capacity, rebalancings have to be performed with a possibly costly state 

information migration among the involved PEs. The class of adaptive hashing-based 

load balancing schemes (AHH, see chapter 2.4.3 and [74] or HABS, see chapter 

2.4.5 and [77]) presented in the prior art section appear to be suitable candidates for 

this type of traffic. 

I have analyzed the behavior of these two schemes by means of our functional NP 

simulation framework (see chapter 5.3.1 for details) and came up with the following 

conclusions:  

– Implementation and evaluation of the highest random weight (HRW) scheme in 

AHH is quite computationally intensive, especially as the hash function has to be 

computed N times in a system with N PEs. In addition, the maximum of the N 

weighted hash values has to be determined (see formula (2-11) in section 2.4.3). 

These calculations cause a significant processing burden for larger processor 

clusters. In addition, as weights are adapted in order to reduce the load from 

excessively loaded PEs, the algorithm guarantees a minimum disruption property, 

i.e. only few flows are shifted, but it is not guaranteed that the shifted flows are 

migrated towards the least-loaded PE in the system. In contrast, the flows are 

randomly spread among the remaining processors, with a weighting according to 

the relative load of all PEs. I have also observed that when the algorithm is 

exposed to a system state near the total system capacity that successive 

adaptations may lead to oscillating flow assignments between the same pair of 

PEs. As the load in the system is reduced, the AHH algorithm stops adaptation, 

which is beneficial from a standpoint of keeping flows where they are, but the 

uneven load observed on different PEs in the processor cluster leads to varying 

queuing latencies for different flows belonging to the same application class. In 

addition, for short-lived bursts, which are a commonly observed phenomenon in 

Internet traffic, the highest-loaded CPUs are shortly moved into overload with 

possible packet loss in the respective queue. This happens although other PEs in 

the cluster still have sufficient processing resources available. 

– For HABS, the implementation effort is even higher. In addition to the 

computations associated with the HRW algorithm in AHH, a flow table has to be 

maintained that keeps track of the set of currently active flows in the NP. With 
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every packet arrival a counter in the table has to be incremented and it is reduced 

with every packet departure. If the flow table is fully populated, no further burst 

shifting may be performed. While the authors state in [77] that up to 300,000 flows 

are active in one of their investigated traffic traces, the flow table is dimensioned 

to hold only 200 entries. Although the authors make no comment concerning 

possible implementation, such a table might be implemented as a hash table with 

collision resolution just as described in the context of the Path Dispatcher in 

chapter 4.4.2.5. Another problem with the scheme as it is described in [77] can be 

identified with respect to packet loss in the system. Whenever an NP system is 

driven near the performance limit, some packets may be lost due to temporal 

overloads on single PEs, or flows from lower priority traffic classes might be 

willfully discarded in order to guarantee the QoS for higher-priority packets. Here, 

additional efforts are necessary, e.g. timeouts or a flow aging mechanism, in order 

to avoid blocking the flow table by packet arrivals that never depart from the 

system again. 

In order to minimize the effort spent for load balancing, while maintaining a close to 

optimal PE resource utilization, I propose a new, simple, adaptive, hashing based 

load balancing scheme referred to as HLU (hash lookup). The following sections 

describe the load assignment process of HLU that has to be performed within the 

control plane CPU of the NP. The resulting flow to PE assignment can be easily 

configured into the Path Dispatcher rule base by performing a hash table lookup 

without collision resolution with the IP five-tuple hash computed by the Pre-

Processor. 

At system startup, an initial assignment is performed for all possible flows 

(distinguished by a hash value that is computed from the Internet five-tuple, called 

FlowID in the following) to the individual PEs in the processor cluster or at least a 

subset of these. A FIFO list is maintained in the control plane software for each 

processor that stores all FlowIDs that are currently assigned to the respective PE 

(see Figure 53). From these FIFOs, the hash table entries for the Path Dispatcher 

can be easily constructed. Initially, the FIFOs will be filled with an equal amount of 

flows. It is known from previous publications (especially [74]) that this assignment is 

not optimal due to a bias in the hash value distribution for realistic Internet traffic. 

During system runtime, the load of the individual PEs is measured and a load 

adaptation that shifts FlowID assignments away from the heaviest-loaded PE to the 

least-loaded PE is performed when an unbalanced load situation is observed. In 

contrast to the schemes of the prior art presented in chapter 2.4, we do not rely on 

queue length as indicators for processor load; instead the load is measured directly 

on the respective processors. This can be achieved for CPUs by inserting two 

additional instructions in the processing code that inform a set of hardware counters 

of beginning and end of the processing routine for each arriving packet. Two 
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different counters can be provisioned for each CPU, such that it is also possible to 

record the load contributions of dedicated and sprayed traffic classes separately. 
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Figure 53: HLU Load Adaptation Scheme 

By removing FlowIDs from the front of the overloaded PE's FIFO and appending it to 

the end of the least-loaded PE's FIFO, I insure that flows that have been rebalanced 

stick with the new assignment as long as possible. This behavior is in contrast to 

AHH, where load variations may lead to oscillations of flow assignments due to the 

nature of the HRW algorithm. The assignment persistence is beneficial in the context 

of stateful networking applications, where rebalancings not only pose the risk of 

packet reordering, but also come at the cost of migrating processing context from 

one PE to another.  

The current load figures ),( ti  measured on PE i at time t caused by the HLU-

assigned traffic (i.e. disregarding the load caused by spraying of stateless 

applications) are gathered for each PE and are low-pass filtered according to the 

following iterative formula: 

 ),(95.),(05.),(
__ adaptpasslowpasslow

Ttititi    (5-1) 

From these individual PE loads, maximum, minimum and average utilization figures 

are computed as follows: 
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_min_max
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i
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i
   (5-2) 

 
i
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i

passlow
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

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_


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An adaptation is triggered, when the utilization of the highest-loaded PE max
  

exceeds an adaptation threshold AT1 and the imbalance between highest and least-

loaded PE exceeds an adaptation threshold AT2. If max
  is excessively exceeding the 

average load, flows are moved towards the least-loaded PE. The number of flows 

moved depends on the amount of relative overload  
avg

 
max  and number of flow 
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bundles currently assigned to the highest-loaded PE (FIFO[max].size()). The term is 

multiplied with a low-pass factor of sover to factor in the risk of moving an aggressive 

flow. Analogous to this, flows are assigned towards an excessively under-utilized PE 

with a slower low-pass factor of sunder. The low-pass factors help to evenly balance 

the loads over several adaptation periods, and wildly oscillating load assignments 

caused by aggressive flows are avoided.  

Code Listing 1 describes the adaptation routine of HLU, which is executed 

periodically (period Tadapt) within the control plane software. 

if(rho_max > AT1) 

{ 

 if(rho_min < rho_avg-AT2 or rho_max > rho_avg+AT2) 

 { 

  if(rho_max-rho_avg > rho_avg-rho_min) 

   flows=sover*(rho_max-rho_avg)*FIFO[max].size(); 

  else 

   flows=sunder*(rho_avg-rho_min)*FIFO[max].size(); 

  while(flows>0) 

  { 

   FIFO[min].push_back(FIFO[max].pop_front()); 

   flows--; 

  } 

 } 

} 

Code Listing 1: HLU Adaptation Routine 

The algorithm's parameters have been determined by a set of simulations with 

realistic Internet backbone traffic (see details in chapter 5.3.1) and yield good results 

for the considered traffic with the values according to Table 18. If the algorithm is 

applied on traffic with different statistical properties as observed in the traces used 

for our simulations, an adaptation of these parameters may be necessary. This 

adaptation may also be accomplished during system runtime by implementing a 

learning algorithm in the control plane of the NP. However, I have not performed a 

detailed analysis of such learning methods within the scope of the work covered in 

this dissertation. 
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Table 18: HLU Adaptation Parameters 

Parameter Value 

AT1 40% 

AT2 15% 

sover 
8

1
 

sunder 
16

1
 

Tadapt 50 ms 
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5.2.3. Combination of Stateless and Stateful Networking 

Applications 

In real-world NP deployments, it is often the case that the device has to process a 

traffic mix that consists of both stateless and stateful networking applications. As 

the processing requirements with respect to packet order and assignment of 

subsequent packets of a single connection to the same PE are stricter than for 

packets belonging to the stateless application class, load balancing in actual NP 

deployments usually implement one of the hashing-based techniques as presented 

in section 2.4. 

As I have shown in section 5.2.1, packet spraying is a suitable alternative for 

stateless traffic that achieves almost perfect load balancing and may exploit a 

pooling gain effect due to the statistical distribution of arriving packets onto the 

available processor resources. 

For stateful networking applications, dedicated load assignment schemes that 

insure processing of packets of a specific flow on a distinct processor are required. 

In section 5.2.2, I have shown that this can be achieved by two techniques from the 

prior art (AHH and HABS), but as both techniques are rather complex to implement, 

I have proposed HLU as an alternative load balancing technique that requires less 

implementation effort. 

A distinct feature of the FlexPath NP architecture is its capability to distinguish 

different applications in the ingress hardware data path and subsequently assign the 

arriving packets onto different processing paths. This feature can now be exploited 

for the load balancing problem by separating the arriving traffic into stateless flows, 

which may be sprayed among the PEs in the parallel processor cluster and stateful 

flows, for which load balancing can be achieved with HLU. The combination of 

these two load balancing techniques, which are respectively applied to different 

applications in the actual traffic mix is referred to as S&H (spraying and HLU) in the 

following. 

Depending on the requirements of the individual applications, different queuing 

priorities can be chosen for each individual traffic type. As Michael Meitinger shows 

in chapter 5 of his dissertation ([107]), the Packet Distributor in our demonstrator 

implementation supports sixteen queues with a static priority, but each of the 

queues can be configured to be used either for packet spraying or implement a 

direct mapping to a single processing element. The Path Dispatcher is used to 

classify the incoming traffic and determines the Packet Distributor queue, into which 

the current packet is assigned. The combination of Path Dispatcher and Packet 

Distributor in a FlexPath NP thus provides a powerful framework for deploying 

sophisticated load assignment techniques that allow a fine-grained control of the 

packet assignment onto the available processing resources. 
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5.3. Functional Simulation of Load Balancing Techniques 

5.3.1. Simulation Model 

In order to evaluate and compare the performance of the various regarded load 

balancing techniques, we have developed a functional level SystemC model of the 

FlexPath NP system as depicted in Figure 54. 
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Figure 54: Functional Simulation Model of FlexPath NP and Reference Architecture for 

Load Balancing 

Packet classification and hash table lookup (which is needed in both HLU and AHH) 

are performed in the Path Dispatcher model of the system simulator.  

The reference scenario is not assumed to feature the extensions of a FlexPath NP 

like pre-processing and packet classification, thus the model of the Path Dispatcher 

is used to perform the load assignment according to the AHH or HABS schemes 

irrespective of the application type to which the arriving packet belongs. In order to 

implement the HABS scheme, a model of the Burst Shifter is necessary, which is 

absent in the FlexPath simulations. The burst shifter remaps flows in overload 
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situations based on queue fill levels and the current flow table entries as described 

in chapters 2.4.4 and 2.4.5. In the following simulations, the flow table size has been 

set to 16 entries. 

For FlexPath NP, I demonstrate S&H as described in section 5.2.3. Stateless QoS 

and BE traffic is separated and assigned into two queues in the Packet Distributor, 

from which they are sprayed among the data plane processors on two different 

priority levels. The stateful IPsec traffic is assigned to dedicated queues that are 

each associated with a single PE and load balancing is achieved with HLU. 

The Packet Distributor model supports 16 queues for up to 16 dedicated CPUs and 

two additional queues for high and low priority packet spraying. The QoS spraying 

queue has the highest interrupt priority, followed by the dedicated assignment 

queues and BE traffic is sprayed with lowest interrupt priority. The queue size is 

initially set to 32 packet descriptors, and packet descriptors are lost, when they are 

assigned to a full queue, i.e. there is no backpressure mechanism that could cause 

head-of-line blocking effects in the Packet Distributor. By implementing such a 

scheme in the Packet Distributor, it is possible to investigate average-case 

dimensioning of the NP architecture, where the provided processing performance in 

the processor cluster is sufficient to deal with average case traffic from the links, but 

not with worst-case scenarios (e.g. all packets require most complex processing 

and arrive with maximum possible rate). Here, it is possible that traffic variations 

lead to (temporary) overloads in the processor cluster, resulting in a certain amount 

of packet loss. By instantiating parallel, non-blocking queues for the different traffic 

types in the system, it is possible to guarantee QoS at least for the higher-prioritized 

traffic types and can limit the packet losses mainly to the BE traffic class.  

The Packet Distributor queues should not be confused with queuing for solving 

output port contention. This is achieved in the output buffers in front of the transmit 

interfaces, i.e. our FlexPath NP model behaves like an output-buffered switch. 

The processing latencies in the data plane cluster are derived from a networking 

stack implemented on our Virtex-4 FPGA-based demonstrator (see [106], NB: this 

version works only with the old Buffer Manager DMA as presented in section 3.3.2.2 

and is not compatible with the SmartMem as presented in chapter 6) and have been 

measured to be 10 µs for plain IPv4 forwarding and  

s
byte

lengthpacket
st

IPproc
mm 112

64

_
310

sec,
  

for IPsec encryption. These latencies were measured on a single running CPU, 

which cannot be used in a straightforward fashion to model effects in processor 

clusters with significantly more cores. In order to cover processing jitter effects that 

appear in more parallelized architectures due to shared resource conflicts, 20% of 
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the packets are processed with a 50% processing time penalty and another 10% of 

the packets are processed with twice the latency obtained from the single CPU 

measurements. 

In contrast to the original AHH implementation, which assumes uniform processing 

latencies for all traffic types, we are using the real CPU loads as input to the AHH 

algorithm. Kencl calculated the CPU load by multiplying the packet rate with the 

processing latency per packet, leading to a theoretical processor load that may 

exceed 100% in overload situations. Since in a heterogeneous application mix the 

processing latency cannot be predicted in such a simple fashion, we had to use the 

actually measured processor loads as described in section 5.2.2, but can thus not 

measure loads beyond 100%. 

The following simulations have been performed with a set of real backbone traffic 

traces obtained from CAIDA ([96], [97], [98]). In order to obtain a comparable data 

throughput, traces from different points in time were multiplexed, thus preserving 

original traffic characteristics like packet inter-arrival times and flow characteristics, 

but increasing the overall bandwidth. One other trace, which came from a highly 

utilized link and which would have exceeded the processing capability of the 

implemented simulation model had to be slowed by a factor of four, but the high 

amount of bursts, which is in contrast to the characteristics observed in the other 

traces, makes it attractive for simulation in order to cover a wider range of cases 

investigated. Table 19 summarizes the main characteristics of the employed traces. 

Table 19: Key Characteristics of Utilized Internet Traces 

Trace Name Packets Avg. Data Rate IPsec QoS BE 

OC-48_mux [96] 22,086,716 1.955 Gbit/s 0.07% 4.14% 95.79% 

OC-192_mux [97] 41,223,895 2.819 Gbit/s 0.40% 4.04% 95.56% 

OC-192_quarter [98] 26,473,646 1.320 Gbit/s 0.63% 7.39% 91.98% 

 

The OC-48_mux trace is generated from four original traces taken on an OC-48 

backbone link in 2002 [96]. The original link was only about 30% utilized, so we 

multiplexed traces taken at 15-minute intervals into a single trace and limited the file 

to one minute duration. Intermediate bursts were limited to 3.2 Gbit/s as our 

simulation model assumes a 32 bit data path running at 100 MHz as models for the 

FlexPath NP hardware pipeline in accordance with the implementation results on 

our FPGA-based demonstrator platform (see chapter 6). 

The OC-192_mux trace was obtained in the same fashion as the OC-48_mux trace, 

but using data from a 2008 snapshot [97]. 
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The OC-192 trace in the opposite direction is the highly utilized one with bursts 

exceeding 9 Gbit/s for periods of a few seconds and intermediate idle times that 

was slowed down by a factor of four in order to get into the less than 3.2 Gbit/s 

range also during most of the original bursts in the trace. 

When comparing the traces from 2002 to those taken in 2008, it can be seen that 

both the IPsec and QoS-marked traffic shares have increased significantly. Still, the 

best effort traffic consumes more than 90% of the traffic in current high-speed 

Internet links. 

Although the FlexPath NP architecture was designed with networking application 

mixes in mind, which are typically found at the network edges, rather than in the 

core network, it was necessary to resort to those backbone traces, as edge or 

access network traces are not made publicly available for both privacy and security 

concerns. We still consider the later obtained results and conclusions to be valid, as 

backbone traffic is essentially only a multiplex of a multitude of edge traffic streams, 

thus important characteristics like protocol distribution and flow-specific 

characteristics like data rates, burstiness and packet inter-arrival times are 

preserved through the multiplex. 

5.3.2. Individual Performance of Load Balancing Techniques 

The load balancing techniques presented in the prior art section were all described 

in an environment with homogeneous processing, i.e. no QoS classification of 

application differentiation was regarded with respect to the load balancing problem. 

In order to make the individual proposed load balancing techniques, i.e. packet 

spraying and HLU, better comparable with those from the prior art, they will be 

evaluated against each other in the following chapter using a simple NP scenario, 

where the entire traffic is subject to plain best effort forwarding. S&H as a 

combination of two load balancing techniques will be presented later after having 

evaluated its individual components. I have not simulated all prior art schemes 

(AHH, Burst Shifting and HABS), but use the most advanced scheme from the prior 

art (i.e. HABS) as a reference, against which the newly proposed packet spraying, 

HLU and later also S&H will be compared. In the following scenarios, the Path 

Dispatcher is configured to perform only the various load assignment strategies 

without classifying the traffic into the QoS, IPsec and BE classes. The CPUs also 

apply the forwarding latency with the previously mentioned jitter behavior. I show 

the simulation results obtained with the OC-48_mux trace (see Table 19) in the 

following; the general behavior does not change significantly when simulating the 

system with the other traces. Some results obtained for the other traces will be 

shown later in chapter 5.3.3, when the proposed S&H technique is applied to a 

heterogeneous traffic mix. 
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Figure 55: Minimum and Maximum CPU Loads Observed with Different Load Balancing 

Strategies 

Figure 55 shows the ranges between minimum and maximum of the averaged 

individual PE utilization for each of the three investigated load balancing schemes 

with an increasing amount of processors in the central network processing cluster. It 

can be seen that for packet spraying we receive a single line indicating that all 

processors are sharing exactly the same load, which can be seen as an optimally 

balanced workload. In HLU, the adaptation threshold AT2 limits the difference 

between most and least utilized processor to a maximum of 15%, in reality this 

imbalance is even lower. Still, there is a residual load imbalance associated with the 

flow persistent load assignment. As not all flow bundles cause the same amount of 

processing effort, any dedicated split-up of the entire load will eventually lead to 

slightly varying workloads on the individual processors. In stark contrast to the two 

before-mentioned schemes are the results for the HABS load balancing. Both the 

AHH as the Burst Shifting components, which are part of the HABS algorithm, are 

designed to eliminate temporal overload in processor utilization. However, none of 

the two schemes explicitly optimize the load distribution in underload situations, i.e. 

if none of the processors reaches its capacity limit, no further loads are remapped. 

This may lead to grossly imbalanced loads especially when the average system load 

is below 60%, where certain processors  remain around 60% utilized while other 

processors are starved at less than 30%. 
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Figure 56: System Packet Loss Rates for Different Load Balancing Strategies 

Figure 56 shows the resulting packet loss rates achieved with each of the different 

load balancing strategies. In addition to packet spraying, HLU and HABS, I have 

also included a simulation with plain AHH, as this scheme is conceptually closest to 

the newly proposed HLU assignment (both are based solely on hash bundle load 

assignment, only the adaptation strategy is different). It is important to realize that a 

system configuration with less than five CPUs is not sufficient to process the 

incoming traffic, i.e. the simulated NP system is in overload and loses significant 

amounts of the incoming packets. As the overall processor load declines between 

five and six processors, the packet loss rate is reduced to less than 10-5. With more 

than 7 processors, the provided processing power is greater than necessary to cope 

with the offered load also during temporary bursts, thus the packet loss rate can be 

interpreted as a measure for the effectiveness of the individual load balancing 

mechanisms.  

The worst packet loss can be observed for both AHH and HLU; beyond eight 

processors, these two schemes almost converge on a similar performance level. 

This can be explained by the fact that both AHH and HLU base their decision on a 

hash split of the traffic among the available processing resources and imbalances 

are leveled out with an adaptation interval in the millisecond range. However, 

network traffic also has very short-lived bursts that lead to brief temporary overflows 

in the Packet Distributor's queues. Reducing the adaptation interval of the two load 

balancing algorithms does not really help, as this would lead to a high amount of 

flow bundle rebalancings and the system would not converge to a steady-state, in 

which a certain level of flow persistence can be maintained. In the transitional range 

for five to seven processors, where the system emerges from the overload situation, 

HLU with its more even balancing of the traffic performs better than AHH.  
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It also appears that HABS performs better than spraying, which might be surprising 

at first. However, these results can easily be explained by the fact that the buffer 

space in front of the processors is higher for HABS (and AHH, HLU) than in packet 

spraying, as the sprayed packets go through a single queue (with 32 entries), the 

dedicated assignment schemes all feature a queue with 32 entries per CPU, i.e. in 

case of five CPUs, the buffer space is 80 packets for the dedicated assignment and 

only 32 for packet spraying. Such queuing effects will be studied in further detail 

later in Figure 58. 

The HABS load balancing scheme performs about half an order of magnitude better 

than both AHH and HLU. As in HABS the AHH algorithm is extended with the Burst 

Shifter described in chapter 2.4.4, temporary overloads caused by short-lived bursts 

are effectively distributed to less-utilized processors also in between two AHH 

adaptation times. However, this increased performance has to be paid with a rather 

high additional effort, as a flow classification has to be performed on the ingress 

side of the NP and the flow table must be maintained for all flows that are currently 

active in the system. In a FlexPath NP architecture this could be achieved by sharing 

some resources in the Path Control unit (although this works on flow bundles rather 

than microflows); otherwise a similar implementation effort has to be performed. 

The best performance of the previously discussed schemes is achieved with packet 

spraying, and a true lossless operation is achieved for any scenario beyond seven 

CPUs. Packet spraying achieves the best results as there is no aggregation of 

packets from a burst in front of a single PE.  
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Figure 57: Average Packet Latency for Different Load Balancing Strategies 

For the remaining investigations, I focus on the range between five and 16 

processors, so the dramatic overload situation is avoided. Figure 57 shows the 

averaged latency of the packets subject to HABS, HLU and packet spraying 
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algorithms. The stated latency figures are measured from receive interface to 

transmit interface and thus include the pre-processing delay, CPU processing delay 

and possible packet re-sequencing delays. For packet spraying, the latency is 

reduced very effectively, until a minimum floor is reached, which is defined by the 

processing time in the central processing cluster without any further queuing delays. 

As the individual processor loads are more evenly balanced in HLU compared to 

HABS, the latency which is achievable with HLU is also slightly smaller than that of 

HABS as shorter average queue lengths may be assumed in front of each 

processor. 
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Figure 58: Packet Loss Rate and Average Latency for Different Packet Distributor 

Buffer Sizes (6 PEs) 

Packet loss rates and latencies are not only dependent on the number of 

provisioned processors, but are heavily dependent on dimensioning the buffers in 

the system. As it can be seen in Figure 58, the packet loss rate may be reduced 

effectively by provisioning larger buffers holding packet descriptors in the Packet 

Distributor. This may be explained by the fact that during those previously 

discussed packet bursts the buffers are not any longer overflowing, but are able to 

hold all incoming packets. When the burst is over, the backlog may be worked off. 

In turn, the average observed packet latency is increasing, because the packets 

accumulated during bursts are still sitting in the queue and suffer a longer delay in 

comparison to when they were lost (where we would not count a latency of infinity!). 

In general, we can see that while architecting an NP system, we can trade off 

additional processing resources with an increased buffer size. If the bursty nature of 

realistic Internet traffic is figured into the dimensioning process, significant amounts 
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of processing resources can be saved by adding some extra buffer space in order to 

accommodate more packets during relatively short bursts and still being able to 

forward the offered traffic. However, the increased latency resulting from larger 

buffers might have a negative effect on interactive applications like VoIP or Internet 

video. While packet spraying operates losslessly and with a constant latency 

beyond a buffer size of 48 packet descriptors for the given processor cluster size of 

6 PEs, the other schemes require significantly larger buffer space to reduce the 

packet losses. 

The FlexPath NP provides different processing paths for packets of different 

applications. The Path Dispatcher in the ingress path of the architecture determines 

the actual path, to which each arriving packet is assigned. In this context, the before 

mentioned queue length vs. number of PEs vs. packet loss vs. packet latency 

tradeoff might be evaluated differently for various traffic classes. In consequence, it 

is conceivable that best effort traffic types are tackled with relatively fewer 

processing resources and excessive packet loss is avoided by larger queues in the 

Packet Distributor. In turn, more processors may be used for QoS-sensitive 

applications in combination with shorter queues in the Packet Distributor in order to 

minimize packet latency. 

5.3.3. Performance of S&H Load Balancing 
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Figure 59: HDGA Decision Graph for FlexPath NP Load Balancing Simulation 

In the following chapter, I show the achieved load balancing and forwarding 

performance by combining a multi-priority packet spraying for stateless traffic with 
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HLU for stateful IPsec processing. The combined scheme for the previously 

described heterogeneous application mix is in the following referred to as S&H. The 

Path Dispatcher is configured to assign the QoS and BE packets directly to the two 

queues that spray the traffic over all processors. Only packets identified as IPsec 

are assigned to dedicated CPUs using the HLU algorithm. The resulting HDGA 

decision graph is shown in Figure 59. 

As described in chapter 4.2.5, the control plane CPU executing the HLU algorithm 

only has to manipulate the contents of a hash table in order to rebalance the 

dedicated load between the CPUs in the processor cluster. We assume a constant 

application scenario during runtime, so that the decision graph itself is not changing 

during runtime. As the load balancing schemes from the prior art do not consider 

such a heterogeneous processing approach and have typically no provisions to 

differentiate between various applications in the ingress path of the NP, we use 

HABS to balance the entire traffic load, irrespective of the actual packet processing 

requirements. However, in both simulation scenarios (FlexPath and reference) the 

processors determine whether to apply forwarding or IPsec latencies to the 

incoming packet. Therefore, the overall processing requirements remain the same 

for the reference simulations and the S&H load balancing in a FlexPath NP. 
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Figure 60: Packet Loss Rates of S&H (FlexPath) and HABS (Reference) 

The results shown in Figure 60 show a consistent behavior with respect to the 

individual characteristics observed for the load balancing schemes in isolation that I 

have presented in chapter 5.3.2. As the vast majority of the packets in the simulated 

Internet traffic trace belongs to the BE class (see Table 19), the same kind of 

"waterfall" packet loss rate can be observed for S&H in the FlexPath NP simulation. 

However, as IPsec processing takes roughly three orders of magnitude longer than 

plain IP forwarding, lossless operation is achieved only beyond nine processors, in 

contrast to the seven processors previously needed for plain forwarding as shown in 

Figure 56. 
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Figure 61 shows the packet latencies differentiated by the respective application 

types in addition to the used load assignment scheme. By giving priority to the QoS 

packets in FlexPath, we are able to forward them with almost minimum latency, 

even while the buffers for BE traffic are in overload and packets are lost in the 

system. The latency figures for BE traffic and QoS high priority traffic converge 

towards the minimum latency which is determined by the plain processing latency 

from nine processors onwards. In contrast, the latency of the IP forwarding packets 

is about a factor of three to four larger in the reference simulation scenario (HABS), 

as the plain forwarding packets occasionally get stuck in the queue behind IPsec 

packets (head-of-line blocking effect). In addition, as QoS packets can not be 

recognized at the ingress path of the NP, no performance advantage can be 

observed for them. Differences might still be achieved in the reference simulations, if 

the processors assign the packets to prioritized output queues, so that the QoS 

packets may receive beneficial treatment with respect to output port contention 

resolution and queuing at the egress side of the NP architecture. This kind of output 

queuing and scheduling is a widely accepted standard in NP architectures and is 

typically implemented by the Traffic Manager hardware resources found in 

commercial NPs (see chapter 2.1.1). However, output port scheduling and port 

contention resolution effects have not been captured in our simulation model, as we 

have not implemented an explicit routing functionality in the processing software 

model. 
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Figure 61: Packet Latencies for S&H (FlexPath) and HABS (Reference) 
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Figure 62: Individual PE Load Share over Time (S&H) 

Figure 62 investigates the variations in the load of an individual PE over the course 

of the simulation for the different processing classes. The proposed combination of 

packet spraying and dedicated load assignment with HLU in a FlexPath NP allows 

some "load breathing" on the individual processors. While a larger share of IPsec 

packets is assigned to the PE (e.g. between 25 and 45 seconds in the simulation 

shown above) and consumes a larger share of the available processing 

performance, sprayed traffic is superseded (and in consequence processed by other 

PEs, which carry less IPsec traffic at the same moment). The supersession is not 

explicitly triggered by the control plane CPU, thus it happens instantaneously and 

packets assigned to the spraying queues don't get stuck waiting for the IPsec 

packet to finish. 

Finally, we wanted to investigate the performance of our proposed load assignment 

scheme with respect to packet reordering, which has been given great attention in 

all prior art schemes for NP load balancing. If the Path Control is properly 

dimensioned, the packet reordering problem is solved on the system level. Figure 63 

shows that the packet reordering rate resulting from packet spraying in the 

proposed form for FlexPath measured in front of the Egress Path Control is roughly 

0.35% of all packets, which is quite significant and roughly two orders of magnitude 

more than the 2×10-5 achieved with the HABS scheme. However, at the output of 

the Path Control unit packet reordering can be completely eliminated except for the 

two simulation runs performed with six and seven processors. More details about 

packet reordering in FlexPath and how to properly dimension the Path Control unit 

can be found in Michael Meitinger's dissertation ([107]). 
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Figure 63: Packet Reordering Rates 

The same set of simulations and investigations presented before with the OC-

48_mux trace have also been repeated with the two other traces (OC-192_mux and 

OC-192_quarter). The general behavior of the prior art and S&H load assignment 

schemes has been confirmed, so that all resulting plots look quite similar. However, 

due to the different shares of IPsec traffic and different average throughput of the 

traces, the performance figures are generally shifted towards the right, i.e. lossless 

operation and low latencies across all traffic types are only achieved with more 

processors in the processor cluster. The key performance figures obtained for all 

three traces for a comparison between S&H and HABS in the multi-application mix 

are summarized in Table 20 below. The performance figures are quoted for the 

system architecture with the minimum number of processor cores necessary for 

lossless operation of the sprayed traffic, i.e. QoS and BE. In both S&H and HABS 

scenarios, packets with dedicated load assignment (i.e. IPsec for S&H) may be lost 

due to temporary traffic bursts that exceed the provisioned buffer capacity. 

Table 20: NP Performance Characteristics for S&H (FlexPath NP) and HABS (Reference 

Architecture) 

Trace # of PEs Scheme Packet Loss QoS Latency IPsec Latency BE Latency 

OC-48_mux 10 
S&H 0.0000% 15,177 ns 2,131,125 ns 15,378 ns 

HABS 0.1311% 51,600 ns 2,044,273 ns 52,624 ns 

OC-192_mux 16 
S&H 0.0002% 15,926 ns 3,122,052 ns 16,139 ns 

HABS 0.2865% 66,928 ns 1,586,312 ns 69,614 ns 

OC-192_quarter 15 
S&H 0.0010% 15,266 ns 3,896,399 ns 15,058 ns 

HABS 0.4792% 159,945 ns 2,124,968 ns 157,635 ns 

 

A common characteristic is that in the FlexPath NP architecture, the latency of the 

QoS packets is always slightly smaller than that for the BE packets, due to the 
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higher interrupt priority in the Packet Distributor and the pre-classification of the 

incoming traffic in the ingress hardware processing pipeline of the NP. For the same 

reasons, it can also be observed that the IPsec latency in FlexPath is also 

consistently higher than in the reference simulation with HABS. In the reference 

scenario, IPsec and non-IPsec traffic is assigned into the same queue in front of the 

processors. Thus the probability for an arriving IPsec packet to be stuck behind 

another IPsec packet is significantly less, as there are much more BE packets than 

IPsec packets in the traffic. In FlexPath NP, IPsec packets have their private queue, 

separated from the BE and QoS traffic classes, so that they always get stuck behind 

other IPsec packets. This effect can also be seen, as the latency of the BE and QoS 

packets in the reference simulation is also significantly higher than in S&H, where 

such packets may only get stuck behind other forwarding packets, but not behind 

IPsec packets. QoS and BE packets in the reference simulation are similar across 

the different traces, but QoS packets are not guaranteed to have a lower latency 

than BE packets. 
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5.4. Conclusions 

In the previous chapter, I have focused the investigations on the generic problem of 

load balancing among parallel processing elements with respect to the FlexPath NP 

architecture. As the FlexPath NP with its Path Dispatcher unit in the ingress data 

path pipeline provides a dedicated unit for traffic classification and differentiation, I 

have shown how to capitalize on this infrastructure in order to achieve superior load 

balancing behavior and QoS performance. Based on networking application 

characteristics, three different cases are regarded: 

– Stateless Networking Applications don't rely on a shared connection state and 

processing of the arriving packets can be performed by any PE in an independent 

fashion. As packet reordering is addressed separately by the Path Control unit in 

a FlexPath NP architecture, we have identified packet spraying as a viable load 

balancing technique for this traffic class. Packet spraying is very beneficial as it 

achieves the most evenly balanced load distribution among the involved 

processors and is completely self-organizing, i.e. no additional monitoring and 

rebalancing effort is needed in the system. 

– Stateful Networking Applications should be load balanced using an adaptive 

hashing-based load assignment scheme in order to keep processing state 

information local on a specific PE for each flow. Following an analysis of state-of-

the-art techniques, I proposed HLU as a simpler but equally effective load 

balancing technique. HLU can be very efficiently mapped to the table lookup 

functionality offered by the HDGA algorithm in the Path Dispatcher. 

– Traffic Mixes containing both stateful and stateless traffic types are typically 

encountered in real-world scenarios. For these circumstances, I have proposed to 

combine packet spraying and HLU into a new technique called S&H. 

The simulations of the different load balancing techniques with realistic Internet 

traffic traces have revealed that packet spraying achieves the biggest performance 

improvements with respect to reduced packet latencies and loss rates and also by 

equally distributing the arriving load over the different processors. Fortunately, as 

most of the traffic in current networks belongs to the stateless traffic class, these 

benefits are preserved in S&H load balancing, as only a minor share of the traffic is 

assigned by HLU. Imbalances caused by the dedicated assignment onto specific 

processors can be filled with sprayed traffic without the need for dedicated control 

from the system management plane. 

In addition to combining different load balancing techniques for different traffic 

types as in S&H, the FlexPath NP architecture allows to differentiate the QoS-levels 

of the incoming traffic in the Path Dispatcher rule base. Therefore, it is possible to 

prioritize performance-critical traffic streams even before they reach the central 
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network processing complex of the NP in the Packet Distributor. In both the 

simulation model and the FPGA prototype implementation (see chapter 6), we have 

implemented a strict priority-based scheduling in the Packet Distributor, but it would 

be possible to implement more sophisticated strategies, if this was mandated by the 

QoS requirements in the respective per-hop-behavior. As the classification in the 

Path Dispatcher is happening under hard real-time constraints, an additional latency 

advantage can be achieved for high-priority packets in a properly configured 

FlexPath NP in comparison to a reference architecture, in which the prioritization is 

performed in software. 

 



Chapter 6 - FlexPath NP Demonstrator 

  175 

6. FlexPath NP Demonstrator 

In the following chapter I conclude the technical part of this dissertation with 

measurement results obtained on an FPGA-based prototype implementation of a 

FlexPath NP in conjunction with the SmartMem buffer manager. In section 6.1, I will 

outline the goals of the prototype implementation and introduce the FPGA 

development board. Section 6.2 presents the implemented FlexPath NP on the 

FPGA platform describing the most important features of the implemented 

functional modules. In order to give the reader sufficient insight about the system 

view of the FlexPath demonstrator, I have also included brief descriptions of the 

functional modules implemented by my colleagues Michael Meitinger and Daniel 

Llorente, who present the conceptual and implementation details in their respective 

dissertations ([107] and [108]). Section 6.3 describes the lab equipment and 

measurement setup that has been used to obtain the demonstrator results. The 

results are then presented in three separate sections: a processor-centric reference 

scenario, which is used to determine the baseline performance of the implemented 

NP without using any of the FlexPath NP-specific functions is described in section 

6.4. In section 6.5, I investigate the effects of the hardware-offload capabilities in a 

FlexPath NP on the system performance. The load balancing techniques are then 

addressed in section 6.6, before the chapter is concluded in section 6.7. 

6.1. Demonstrator Goals and Platform 

In order to prove the validity of the FlexPath NP architectural approach and in order 

to support the results obtained from the various simulations presented before, we 

decided to implement a full-featured prototype of a FlexPath NP on an FPGA 

development platform. The main objectives of the demonstrator are twofold: 

– By implementing the crucial functional elements of the FlexPath NP architecture 

(i.e. Pre-Processor, Post-Processor, Path Dispatcher, Path Control) we can prove 

the feasibility of the proposed elements. In addition, we can gain real-world 

performance figures like area consumption and packet throughput that would not 

be accessible purely by simulation. 

– As we have also implemented an entire NP system, we are able to perform 

performance measurements and to compare those figures to the projected 

behavior obtained through our various system-level simulations. In addition to 

justifying the previous simulation results, a real implementation will also reveal 

behavior which is typically not captured by simulations, due to the higher level of 

abstraction and simplifying assumptions of the simulation model. While a 

simulation model is well suited for exploring new ideas and giving initial support 

for new hypotheses, only a full implementation of the proposed architecture is 

able to finally prove the viability of each concept. 
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Of course, such an FPGA-based demonstrator also has some problems, which 

should be briefly discussed here.  

At first, implementing a complex multi-processor system-on-chip design such as a 

network processor is an inherently hard task, which consumes a lot of effort from a 

pure practical and engineering standpoint, in addition to the scientific and 

theoretical hurdles. In order to reduce the implementation effort, we used readily 

available IP (here: intellectual property) as far as possible and tried to get along with 

optimized solutions only in the design and implementation of the FlexPath-specific 

performance-critical entities. In turn, some of the out-of-the-box implementations 

may not be performance-optimal as they have not been specifically optimized for a 

high performance use case. The same also holds true for the software development 

process. While we initially tried to build the IP stack for the two PowerPC cores on 

the lightweight IP stack [95] supported by Xilinx; we discovered that this solution 

had several severe drawbacks. At first, data plane and control plane functions were 

not separated as the software was originally intended for an embedded 

microcontroller scenario with TCP/IP communication functions rather than 

implementation of a router. Therefore, it was not possible to execute the code on 

several processors in parallel, while sharing a common configuration among the 

cores. In addition, the stack also lacked an IPsec implementation, which we wanted 

to include for demonstrating the effects of different networking applications on the 

overall system performance. Finally, we ended up implementing our own stack with 

some control plane functions centralized on one PowerPC and a set of data plane 

functions that can be executed on both processors. Although the structure chosen 

for this implementation basically matches the architecture found in parallel 

processor cluster NPs, it is a plain C-code program, which is compiled with the 

standard EDK/gcc tool chain and has not been specially optimized for maximum 

performance, e.g. by heavily using inline assembly. In addition, as the two PowerPC 

processors execute different executables (they share the same packet processing 

functions, but the Control Plane executable includes additional code and the 

initialization routines and Packet Distributor drivers are slightly differently configured 

for the two processors), the achievable forwarding performance is not equal, 

probably due to non-linear effects when compiling and linking the slightly different 

code bases. 

The second problem of the achievable measurement results are properly judging 

their relevance as they would have to be compared to ASIC implementations from 

the commercial domain. As mentioned before, the implementation of the 

demonstrator could not be optimized as far as a competing commercial architecture 

would be. In addition, we are constrained in our implementations by the FPGA 

environment provided by Xilinx. The embedded PowerPC cores run at a clock 

frequency of 200 MHz, which compares to 1.5 GHz in some commercial NPs. 

Implementing the application-specific logic in FPGA technology, based on mapping 
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logic functions to lookup-tables and interconnecting different functional entities by 

means of the FPGA switching fabrics can not be compared to a standard cell ASIC 

design flow, where the functionality is implemented in dedicated logic gates and the 

wiring is also customized. 

At this point, it is also important to stress that the FlexPath NP concept is claimed 

as a general architectural extension to current network processors, and is not 

constrained to implementation in an FPGA environment. The FPGA demonstrator 

should be understood as a suitable tool for a university research group to easily (and 

cheaply) achieve valid implementation results. 

Finally, the results obtained by the demonstrator implementation deliver a good 

insight into the behavior of the proposed FlexPath NP architecture, even though the 

performance level is not competitive with current commercial designs. The flexibility 

associated with the FPGA design flow also allows to (relatively) easily reconfigure 

the device to implement different features and provide also a reference for the non-

FlexPath NP case. By doing this, the gain associated with the proposed 

architectural enhancements can be quantified. 

An initial effort was undertaken to implement Pre- and Post-Processor along with 

the lightweight IP stack [95] to obtain first estimations for the system simulations as 

presented in chapter 3.3.2.2. As the Virtex-II Pro FPGA board used for this initial 

demonstrator had insufficient resources to implement an entire network processor in 

it, we moved our efforts to the Xilinx ML410 development board [100], which 

features a significantly larger Virtex-4 FX 60 device. The FPGA features two hard-

macro PowerPC cores and Gigabit Ethernet MACs. The configurable logic 

comprises 25,280 slices with two Flip-Flops and two 4-input lookup tables each and 

the device has 4,176 kb of embedded SRAM distributed over 232 BlockRAM 

instances [101]. 

On the development board itself, there are two Gigabit Ethernet PHYs (one of them 

connected to the FPGA via RGMII and the other one via SGMII using the high-speed 

differential serial I/Os of the Virtex-4). In addition, there are two types of dynamic 

memory: a 64 MB DDR-SDRAM and a 256 MB DDR2-SDRAM. We had to use the 

DDR-SDRAM memory as shared memory for both the software and packet memory, 

due to clock tree limitations. The involved clock region has to support different 

clocks for the PowerPC hard cores, receive and transmit clocks for the two MAC 

blocks plus the 100 MHz system clock for the PLB bus and all attached logic in 

addition to the DDR clock signals needed for driving the memory interface. Using 

the DDR2 memory would have been very attractive from the performance standpoint 

as it has a 64 bit data bus that matches the PLB width. The DDR memory only 

features a 32 bit data bus which reduces the available memory access bandwidth 

for the NP demonstrator.  
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Figure 64: Photo of ML410 Development Board with Two Customized Extension Boards 

We have produced two extension boards for the ML410, which are connected using 

the personality module expansion ports. A smaller board routes 80 general-purpose 

pins from the FPGA to 0.1" test headers for debugging and analysis of the 

implemented designs with our Logic Analyzer. The second expansion boards 

features a set of LEDs, a LCD and some push-buttons for visualization of the 

internal state and parameters of the system and providing a simple means of I/O for 

triggering various system configurations. Figure 64 shows a photo of the ML410 

board with the extension boards as we have used it for our final measurements. 
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6.2. FlexPath NP System Overview 

Figure 65 shows the functional blocks and major data flow through the implemented 

FlexPath NP demonstrator system as implemented on the ML410 development 

board. The darker green colored modules in the hardware processing pipelines have 

been implemented by me or by students under my supervision and I have added 

top-level block diagrams for these modules in the Appendix section. 
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Figure 65: Building Blocks and Data Flow through FlexPath NP Demonstrator 

The Pre-Processor is the first element in the Ingress Hardware Processing Pipeline. 

It performs a round-robin receive port scheduling among the two attached MAC 

ports. The extraction of relevant header fields happens in real-time as the packet is 

read out from the MAC receive buffers. If the arriving packet is an IPv4 packet, the 

next-hop lookup engine is triggered with the destination address. After the packet is 

completely received and the integrity checks (packet length, IP checksum) are 

passed, the Context Assembler as next downstream element is triggered. 
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The Context Assembler reads out the extracted context fields from the Pre-

Processor and consolidates the obtained information into a protocol-independent 

format referred to as Raw Context (for details refer to Figure 88 in the Appendix). In 

addition, a next-hop lookup result (hit or miss) has to be synchronized with the Raw 

Context of the current packet. The Raw Context is forwarded to the Path Dispatcher 

and Context Generation Engine for further use. 

The functionality of the Path Dispatcher has already been extensively discussed in 

chapter 4 of this dissertation, so I will not repeat this discussion here. A detailed 

description of the reconfiguration interface, which is provided over the PLB bus, is 

presented along with the detailed descriptions of the other modules in the Appendix. 

After the classification result is determined by the Path Dispatcher, the information is 

passed on to the SmartMem DMA engine, which may use this information for storing 

the packet data in different memories. In the implemented version of the FlexPath 

NP demonstrator, all packets are stored in the central shared DDR SDRAM memory. 

The SmartMem DMA engine is discussed in detail in Daniel Llorente's dissertation 

[108], but I have included a brief overview of its top-level components and external 

interfaces in the Appendix to support understanding the module interactions in the 

implemented demonstrator system. 

The SmartMem delivers the packet descriptor (see Figure 91 in the Appendix) 

containing the addresses of the memory locations, in which the packet has been 

stored, along with the classification information obtained from the Path Dispatcher 

to the Context Generation Engine. Depending on the further processing path of 

the packet, a corresponding Context has to be saved in the main memory 

depending on the subsequent processing element. If the packet is headed for one of 

the PowerPC processors, a Context Information Input (CII) will be generated that 

arranges the extracted packet header fields sorted by their relevance for IP 

forwarding in a segment at the beginning of the first packet data segment. This data 

can be read in by the processor in a single cache line transfer and as the fields are 

already 32 bit aligned, the access efficiency is greater than if masking operations 

would have to be carried out on the packet data section. In addition, as the Pre-

Processor has already executed integrity checks on the packet, the processor 

doesn't have to check that again. However, if the packet is headed for AutoRoute, a 

Context Information Output (CIO) is necessary that contains the Assembler-like 

instructions for the Post-Processor that trigger replacement of the MAC addresses, 

TTL decrement and IP checksum recalculation. The required instructions that will be 

copied into the Context and the sequence, in which Raw Context words are copied, 

are fully reconfigurable through another PLB slave attachment. More detailed 

descriptions for the Context Generation Engine and the typically used CII/CIO 

context contents are added in the Appendix. 
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After the packet context has been stored in SDRAM, only the packet descriptor is 

forwarded through the remaining modules of the NP. If a unit needs context or 

packet data information, it can be obtained from the shared SDRAM. The Ingress 

Path Control tags the packet descriptor with a continuous flow-specific sequence 

number. As all arriving packets traverse the ingress pipeline in a strictly deterministic 

fashion without being able to pass each other, the tagging records the precise 

arrival sequence of the packets in the NP system. Further details about the Path 

Control are found in Michael Meitinger's dissertation [107]. 

The Packet Distributor is the final element in the ingress hardware processing 

pipeline and provides queuing and interrupt functions to allow an efficient 

distribution of packets to their respective processing elements. Sixteen queues have 

been provisioned for CPU-bound traffic, each queue holding up to 16 packet 

descriptors. By configuration in the interrupt controller, each queue may be 

associated with either processor or packets may be sprayed by interrupting both 

processors, while packet descriptors are present in the queue. An additional queue 

is provisioned for AutoRoute traffic and Discard packets, from which packet 

descriptors are written over the PLB bus interface to either the Receive Unit 

(AutoRoute) or the SmartMem (silent discards). A detailed discussion of the Packet 

Distributor can be found in Michael Meitinger's dissertation [107]. 

In the FlexPath NP demonstrator, the Network Processing Complex consists of the 

two PowerPC cores and an AutoRoute path. The first PowerPC core, which is used 

as a plain data plane processor, runs the IP stack with IPv4 forwarding code. By 

means of compiler flags, the stack can be configured to either use the FlexPath-

specific hardware-offload features by using CII and / or CIO information for the 

forwarding or process the packets by accessing the packet data. The second 

PowerPC shares the same IP forwarding functionality, but it also takes over Control 

Plane functions. After system startup, it configures the Path Dispatcher, Context 

Generation Engine and Packet Distributor. If an active load balancing strategy is 

chosen for the actual scenario (e.g. AHH or HLU), it periodically extracts load 

measurements and updates the load balancing tables in the Path Dispatcher. Even 

in static load assignment, the Control Plane processor regularly updates load figures 

on the LCD-display of the ML410 extension board (see Figure 64). Due to the 

additional functionality of the Control Plane software, the forwarding performance of 

the second CPU is slightly smaller than that of the data plane processor. The IPsec 

stack functionality, which was implemented in addition to the IP forwarding 

functions (see [106] and section 5.3.1) had to be removed, as the en- and decryption 

functions work on the 64 byte segmentation of the previous Buffer Manager version 

and could not be updated to the SmartMem memory management during the final 

months of the FlexPath NP project. Therefore, the final measurements can only be 

performed with QoS-aware IP forwarding. 
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Once the packets have passed the Network Processing Complex, the Packet 

Descriptors are sent to the Receive Unit as first element in the Egress Hardware 

Processing Pipeline. The Receive Unit is essentially a small FIFO that may provide a 

backpressure towards the PLB interface and re-serializes the flow of packets 

through the Egress Pipeline. 

The next function in the egress side of the NP is the Egress Path Control. Here, the 

sequence numbers in the packet descriptors are checked on correct transmit 

sequence, and out-of-order packet descriptors are queued in reordering queues to 

restore correct packet order. More information on the Path Control can be found in 

[107]. 

Next, packets are forwarded to the Traffic Manager, which in the demonstrator 

supports two queues per physical port (high and low priority) that resolve output 

port contention. The queues can hold up to 128 packet descriptors and the Traffic 

Manager performs a strict priority-based round-robin scheduling and traffic policing 

at 1 Gbit/s per port. A more detailed description of the Traffic Manager is available 

in the Appendix section. 

As packet descriptors are scheduled for retransmission from the NP, they are again 

passed to the SmartMem DMA engine. The packet data and the (optional) CIO 

information for the Post-Processor is read from the SDRAM memory and forwarded 

to the Post-Processor. 

The Post-Processor is able to perform basic packet modifications like field 

substitutions, insertions, deletions and TTL decrement and IP checksum calculation 

operations. The modifications are supplied as CIO information, which may be 

generated either by the Context Generation Engine (as in case for AutoRoute 

packets) or the PowerPC processors (e.g. as an offload of tunnel header insertions). 

More information about the Post-Processor may also be found in Michael 

Meitinger's dissertation [107]. 

Table 21: FPGA Synthesis Results of Combined FlexPath / SmartMem Demonstrator 

System 

Resource Type Resource Quantity 

FPGA Slices 19,391 of 25,280 (76.35%) 

 Slice Flip-Flops 17,573 of 50,560 (34.76%) 

 Slice LUTs 31,319 of 50,560 (61.94%) 

FPGA BlockRAM memories 124 of 232 (53.45%) 

PPC405 Hard Macros 2 of 2 (100.00%) 

1 Gbit EMAC Hard Macros 2 of 2 (100.00%) 

Critical Path 11.428 ns (i.e. 87.507 MHz) 
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The before-mentioned FlexPath-specific hardware modules are implemented in a 

system with the two PowerPC processor cores, PLB bus, Ethernet MACs and the 

multi-port memory controller provided in the Xilinx EDK IP library. The synthesis 

results of the entire system, including debug interfaces are summarized in Table 21. 

In contrast to the post-synthesis estimate of only 87.5 MHz, the Place and Route 

tools are able to bring the final design slightly above the 100 MHz margin, so that 

we are able to run the FlexPath demonstrator at 100 MHz for most of the logic 

elements, while the PowerPC cores run at 200 MHz. 

 



Chapter 6 - FlexPath NP Demonstrator 

184   



Chapter 6 - FlexPath NP Demonstrator 

  185 

6.3. Measurement Setup 

In order to stimulate the NP system, I generate IP traffic with a Spirent SPT-2000 

network tester [103], which is also analyzing the traffic forwarded by the device 

under test and allows to easily gather crucial performance information like packet 

loss rates, forwarding speed, packet latencies and jitter. The network tester also 

features automated test runs based on the RFC 2544 [104] benchmarking suite. 

x.x.192.x - x.x.255.x

x.x.64.x - x.x.127.x

x.x.128.x - x.x.191.x

x.x.0.x - x.x.63.x

Spirent SPT-2000
FlexPath NP

(Xilinx ML410)

Test Port 1

Test Port 2
Port1

(SGMII)

Port0

(RGMII)

Gigabit Ethernet

FlexPath Port0 (RGMII):

IP: 192.168.0.6

MAC: 00:0A:35:01:77:26

FlexPath Port1 (SGMII):

IP: 192.168.8.4

MAC: 00:0A:35:01:77:27

Router 1:

IP: 192.168.54.35

MAC: 00:11:22:33:44:01

Router 2:

IP: 192.168.154.37

MAC: 00:11:22:33:44:02

Router 3:

IP: 192.168.72.5

MAC: 10:AA:BB:CC:DD:01

Router 4:

IP: 192.168.200.49

MAC: 10:AA:BB:CC:DD:02  

Figure 66: Test and Measurement Setup 

The FlexPath NP demonstrator is connected to the network tester using both 

Ethernet links of the FPGA platform as shown in Figure 66. While each MAC of the 

FlexPath NP is assigned one IP and MAC address, the Spirent Test Center allows 

provisioning multiple nodes to be aggregated behind each physical test port 

interface. In order to obtain a simple measurement scenario, we have added two 

Routers for each physical test port, which may be reached using distinct MAC and 

IP addresses. It is important to notice, that the routers and the FlexPath NP 

prototype do not exchange real routing protocol messages between each other. 

Instead, the Routers emulated by the Spirent network tester serve simple as sources 

and destinations of IP packets that are to be forwarded by the FlexPath NP data 

path.  
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The routing table in the FlexPath next-hop lookup engine and the algorithm in the IP 

stack supports this test setup by inspecting only the third octet of the destination IP 

address as shown in Table 22 instead of performing a longest prefix match 

operation. Traffic generated by the network tester will always be sent to the 

FlexPath NP, where the output port will be determined based on the destination 

address in the IP header. Thus it is possible for a packet to be sent back to the 

network tester via the same physical link or to be forwarded to the other port 

depending on the IP destination address. In any case, the FlexPath NP will perform 

all necessary packet modifications like exchanging the MAC addresses and 

updating the TTL and checksum values. 

Table 22: FlexPath NP Next-Hop Lookup Engine Routing Table 

Third Octet Egress Port MAC Destination Address 

0 - 63 0 (RGMII) 00:11:22:33:44:01 

64-127 1 (SGMII) 10:AA:BB:CC:DD:01 

128-191 0 (RGMII) 00:11:22:33:44:02 

192-254 1 (SGMII) 10:AA:BB:CC:DD:02 

255 None (i.e. test case for next-

hop miss) 

Result must be determined 

by software, which would 

forward these packets to 

Router 4 

 

The provisioning of two router devices per Spirent test port allows easily 

implementing traffic patterns that are forwarded on the AutoRoute or CPU paths. By 

convention, rule bases in the Path Dispatcher can later be configured in a way that 

all packets destined for Routers 1 and 3 will be forwarded by the processors and 

packets destined for Routers 2 and 4 will be taking the AutoRoute path through the 

FlexPath NP. 



Chapter 6 - FlexPath NP Demonstrator 

  187 

6.4. Processor-centric Reference Measurements 

Figure 67 and Figure 68 show the results of an RFC 2544 throughput test performed 

on the reference setup, with arriving traffic being directed over either PowerPC 

(designated as Data Plane or Control Plane) or sprayed over both processors. 
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Figure 67: Processor-centric NP Throughput 

For only a single CPU in the system, a linear increase of the maximum achievable 

throughput can be observed, which indicates that the system yields a constant 

packet forwarding rate. As IP forwarding is not dependent on the length of the 

individual packets, the constant forwarding rate can be directly related to the 

processing delay caused in the processor(s). The constant forwarding performance 

can also be seen well in Figure 68. The Control Plane processor achieves roughly 80 

kpps, while the Data Plane Processor is able to forward around 83 kpps. This 

divergence can be explained by the fact that the code base for the two processors 

is slightly different and the Control Plane processor is interrupted periodically (every 

50 ms) to gather load information of the two cores and display them on the LCD 

display of the ML410 extension board. As the packet size is increased towards 

maximum length Ethernet frames with 1518 bytes, the throughput on the shared 

PLB bus and the memory interface is increasing and in turn the processing 

performance of the CPUs is slightly decreasing. This observation is in line with the 

decline in processing performance predicted by the system level simulations in 

chapter 3.3.2.3 (Figure 28), although the absolute figures (30 kpps in the system 

simulations) could be increased by a factor of 2.7. This increase can be explained by 

the differences in the hardware platform, moving from the Virtex-II Pro platform to 

the Virtex-4 FPGA. The final FlexPath NP demonstrator features a faster DDR-
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SDRAM as shared packet memory device. In addition, the SmartMem DMA engine 

provides better performance compared to the previously used Buffer Manager (see 

discussions in [108]) and the software stack is more optimized than the LwIP stack 

with which the system simulation model was calibrated. 

Reference NP Forwarding Performance

0

20

40

60

80

100

120

140

160

180

0 200 400 600 800 1000 1200 1400 1600

Packet Size (B)

F
o

rw
a

rd
in

g
 P

e
rf

o
rm

a
n

c
e

 (
k

p
p

s
)

Data Plane

Control Plane

Packet Spraying

 

Figure 68: Processor-centric NP Forwarding Rate 

When the incoming traffic is sprayed among both PowerPC processors in the 

system, the forwarding rate is increased to 160 kpps, which is 98.2% of the sum of 

the individual forwarding rates. As we can see, this figure is even better than the 

prediction made during the system simulations in chapter 3.3.2.3, which was 91.4%, 

but again these figures were based on a different hardware platform with a less 

efficient memory subsystem. 

However, when the packet size increases beyond 256 bytes, the resulting higher 

loads on the bus and memory interfaces reduce the forwarding performance and we 

reach a maximum throughput of 1460 Mbps for 1280 byte packets. The further 

sharp decline for the largest 1518 byte packets is due to the reduced bursting 

effectiveness experienced in the SmartMem DMA operations for packet sizes, which 

are not powers of two and are discussed in detail in Daniel Llorente's dissertation 

[108]. 
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6.5. Hardware-offload Aspects of FlexPath NP 

In the following chapter, I will successively evaluate the various levels of hardware 

offload associated with the FlexPath NP concept, and discuss their influence on 

improving the overall system performance. 

6.5.1. Forwarding Performance Using Pre-Processor 

The first step in hardware offloading is achieved by moving the ingress packet 

integrity checks to the Pre-Processor and using the extracted header fields from the 

input context (CII) in the forwarding software. In this first step, the software still has 

to perform the necessary egress side packet manipulations directly on the packet 

data, i.e. the Post-Processor is not yet used for the forwarding task. 

The Path Dispatcher is now configured in a way that supports differentiating corrupt 

packets, control plane packets (e.g. ARP or ICMP) and standard IP forwarding 

packets. In addition, AutoRoute is only enabled for flows with a valid lookup result 

and that are destined to a certain IP destination address range. This allows exposing 

the system to various AutoRoute vs. CPU forwarding shares by using different flows 

from the Network Tester with varying bit rates. The configured HDGA graph is 

depicted in Figure 69. 

Disc DiscCP: Ctrl

00 0
1 10

LU-Flag=1

11

Disc-Flag = 1

Ctrl-Flag = 1

0 1

DP: 

spray
IP_dst&0.0.255.0>0.0.100.0

0 1

IPfwd * Egr_Port=1

0 1

AutoRoute 

Port0

AutoRoute 

Port1

*: "IPfwd" will be configured either as

- DP: IPfwd (dediacted PPC0)

- CP: IPfwd (dedicated PPC1)

- DP spraying (both PPCs)

 

Figure 69: HDGA Graph for Static FlexPath FPGA Measurements 

In contrast to the software reference scenario presented in chapter 6.4, the Context 

Generation Engine has to store the 60 byte CII information according to Figure 93 (in 

the Appendix section) in the DDR-SDRAM. The processors retrieve this context to 

determine the appropriate actions, and write the modifications back into the packet 

data segment of the memory. These additional operations lead to a significant 
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overhead in required memory access bandwidth, especially for small packets, where 

the 60 byte CII almost doubles the required space of the packet data itself. 

Initially, the network tester generates traffic with equal shares among four 

connections between the following routers (see Figure 66): 

– 00-CPU (loopback on Port0, CPU forwarding): Router2 to Router1 

– 01-CPU (switching Port0 to Port1, CPU forwarding): Router1 to Router3 

– 10-CPU (switching Port1 to Port0, CPU forwarding): Router4 to Router1 

– 11-CPU (loopback on Port1, CPU forwarding): Router4 to Router3 

If the traffic volume on each of these connections is kept equal, there will be no 

output port contention effects by exceeding 1 Gbit/s for the physical interface when 

scaling the system beyond the gigabit limit. In addition, by combining traffic from 

both physical interfaces, the latency differences caused by the different MAC cores 

(the SGMII MAC causes a higher latency than the RGMII MAC) can be averaged out. 

The results of the RFC 2544 throughput test for this scenario are shown in Figure 70 

and Figure 71. 
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Figure 70: FlexPath NP Throughput using CII (Pre-Processor) 
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FlexPath NP w/ Pre-Processor
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Figure 71: FlexPath NP Forwarding Rate using CII (Pre-Processor) 

Offloading the processors by using the results of the pre-processing steps in the 

FlexPath NP increases the forwarding performance of the single processors by 

roughly 75% to 144 kpps for the Data Plane processor and 143 kpps for the Control 

Plane processor. This increase is tripled in comparison to the estimated figures in 

chapter 3.3.2.4, and this may be explained by the fact that the currently 

implemented software stack is much smaller than the original lightweight IP stack, 

on which the application profiling in the system simulation has been based. The 

amount of instructions necessary to fulfill e.g. the IP header checksum verification 

may be assumed to be identical across the implementations. However, as the same 

amount of instructions is offloaded from a smaller overall program, the relative 

offload gain increases. 

Due to the higher forwarding performance provided by the CPUs, the system 

reaches higher data rates already with smaller packet sizes. In addition, using CII 

information adds to the overall necessary memory accesses. In consequence, a 

single processor is now sufficient to exhaust the available memory access 

bandwidth for packets beyond the 1280 byte packet measurement, and we see the 

deteriorating performance effect of increasing bus and memory congestion on the 

forwarding rate for packet sizes between 256 bytes and 1280 bytes, where the 

single processor performance is reduced almost linearly from 144 kpps to 125 kpps. 

Regarding packet spraying among both processors, the initial forwarding rate of 286 

kpps (which is 99.6% of the sum of the individual forwarding rates) cannot be 

maintained through larger packet sizes. The peak bandwidth of the offloaded 

system is reached for the 1280 byte measurement at 1505 Mbit/s. The convergence 
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of the measurement results for packet spraying of the offloaded and reference 

scenarios at 1280 byte and 1518 byte packets supports the assumption that the 

current demonstrator system is running into a memory access bandwidth bottleneck 

around 1.5 Gbit/s. Still, when compared with the system simulations in chapter 

3.3.2.4, the system throughput could be raised by 50% from 1 Gbit/s, mainly due to 

the improved timing of the DDR-SDRAM on the Virtex-4 platform and the advanced 

memory management algorithms implemented in the SmartMem buffer manager. 

6.5.2. Forwarding Performance Using Pre- and Post-Processors 

The next step in applying hardware-offload capabilities is to remove the necessity 

for the processors to perform the packet manipulations on the packet data itself, but 

instead simply generate an appropriate output context (CIO), which will then be 

executed by the Post-Processor in the NP egress data path pipeline. Figure 72 and 

Figure 73 show the results of the corresponding RFC 2544 throughput test. 
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Figure 72: FlexPath NP Throughput using CII and CIO (Pre- and Post-Processor) 

The NP throughput chart reveals a very steep increase of the supported bit rate for 

packet sizes smaller than 512 bytes, where an aggregated throughput of 1.2 Gbit/s 

is reached. After this point the packet spraying graph shows a significantly smaller 

increase before reaching the highest throughput for 1280 byte packets at 1430 

Mbit/s. 
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FlexPath NP w/ Pre- and Post-Processor
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Figure 73: FlexPath NP Forwarding Rate using CII and CIO (Pre- and Post-Processor) 

When looking at the forwarding rate comparison in Figure 73, several interesting 

effects may be seen. 

At first, the forwarding performance of a single Control or Data Plane processor 

(160.5 kpps) matches the forwarding performance for spraying among both 

processors in the reference scenario described in chapter 6.4. In other words, by 

using all provided hardware-offload features of a FlexPath NP, the processing 

performance of each core is effectively doubled. If the system was scaled towards a 

real multi-core scenario - as in virtually all current commercial NP devices - adding 

the Pre- and Post-Processor units can help save half of the programmable 

processor resources on the chip, or double the processing capability of already 

existing cores to implement more computationally challenging networking 

applications. 

In relation to the previously presented offload of the packet integrity checks to the 

Pre-Processor unit, the forwarding performance is increased by a further 12%. In 

line with the estimations presented in chapter 3.3.2.2, the main contribution is 

coming from the Pre-Processor and CII data structure, such that the effort of 

implementing a Post-Processor might be avoided, as long as a system designer 

focuses on a software-centric NP architecture. Of course, the Post-Processor is a 

necessary pre-requisite for the AutoRoute capability of a FlexPath NP, which will be 

analyzed later in section 6.5.3. 

However, the gains achieved by using CII and CIO for software processing are 

limited to packets shorter than 512 bytes. Beyond the 768 byte measurement, the 
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packet spraying performance of the CII-only scenario is slightly higher than that of 

the combined CII and CIO setup. Both forwarding rates are then linearly decreasing 

due to the previously identified memory access bandwidth bottleneck. This effect 

can again be explained with the involved memory bottleneck: if the processors 

generate the CIO data structure, which is physically stored in the same section as 

CII in the first segment of the packet, the processors are relieved from reading in the 

packet header and performing the necessary bit-level manipulations. However, the 

SmartMem buffer manager has to retrieve the additional context information when 

retransmitting the packets, and I have already shown in 3.3.2.2 that memory reads 

from DRAM are more time-consuming than writes. In addition, the output context 

generated by the processors will only consist of eight words (cf. Figure 94 in the 

Appendix section), which is also less than what can be transferred over the PLB bus 

in a maximum length burst of 16 consecutive 64 bit doublewords. In summary, it can 

be stated that while using the Post-Processor for software-based IP forwarding 

brings a little relief for the processing resources, the overheads associated with the 

additional CIO data structure limit the overall system performance, if a memory 

bottleneck is present. 

6.5.3. Forwarding Performance Using AutoRoute 

Figure 74 and Figure 75 illustrate the results of the RFC 2544 throughput test for 

AutoRoute, which is an alternative for software-based IP forwarding in FlexPath NP. 

The network tester is again configured to mix four different flows, in order to 

generate several AutoRoute connections with balanced MAC latency and avoiding 

output port contention. The resulting flows are resembling the CPU-centric scenario 

used before, replacing destination routers 1 and 3 by 2 and 4 in order to have them 

routed via AutoRoute by the Path Dispatcher rule base shown in Figure 69. 

– 00-AR (loopback on Port0, AutoRoute): Router1 to Router2 

– 01-AR (switching Port0 to Port1, AutoRoute): Router2 to Router4 

– 10-AR (switching Port1 to Port0, AutoRoute): Router3 to Router2 

– 11-AR (loopback on Port1, AutoRoute): Router3 to Router4 

As AutoRoute packets are forwarded exclusively by hardware units, which are 

implemented as ingress and egress data path pipelines of the NP, the performance 

is dominated by the DMA times consumed in the SmartMem buffer manager during 

reception and retransmission and for storing the CIO context (cf. Figure 94 in the 

Appendix section) by the Context Generation Engine. In addition, the packets may 

experience queuing delays in the Traffic Manager, if there is output port contention. 

Pre- and Post-Processor work on the packet data on-the-fly and add only a few 

cycles of latency to the packet. Context Assembler, Path Dispatcher and Context 

Generation Engine each finish their work within a minimum frame time in order to 

meet the real-time requirements of the data path pipeline. 
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FlexPath NP w/ AutoRoute
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Figure 74: AutoRoute Throughput 
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Figure 75: AutoRoute Forwarding Performance 

The packet forwarding rates are almost constant at around 830 kpps for 64, 96 and 

128 byte packets, which can be transferred between the memory and the 

SmartMem in a single burst transfer. Although the length of the individual burst 

transfers increases among these three packet sizes, the delay is dominated by 

constant overheads like bus arbitration and memory commands (e.g. RAS/CAS). A 

steep degradation of the performance can again be observed for the 160 to 256 
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byte packets, which require two burst transfers. A more detailed analysis of these 

effects can be found in chapter 5.4 of Daniel Llorente's dissertation [108]. 

Beyond the 512 byte packet measurement, the curves of the AutoRoute and 

processor-based forwarding performance converge on the previously presented 

memory bottleneck. 

Considering the achievable data rates (Figure 74), it is interesting to observe that 

AutoRoute performs better than the two processors in the FlexPath scenario. This 

difference, which is around 80 Mbps for 768 and 1024 byte packets, 46 Mbps for 

the 1280 byte packets and 29 Mbps for the 1518 byte packets, can be explained 

with the absence of additional memory accesses by the two PowerPC processors. 

In case of the 1518 byte packets, forwarding by the software reference scenario (i.e. 

without context!) performs best with 1366 Mbps, followed by AutoRoute with 1316 

Mbps and the FlexPath software with 1287 Mbps. 

6.5.4. Packet Latencies 

All previously presented measurements were RFC 2544 throughput tests applied to 

the different configurations of our FlexPath demonstrator yielding maximum 

achievable packet forwarding rates and throughput. Another important 

characteristic of an NP system is the latency imposed on the packets traversing the 

system. In addition to the processing delay imposed by the processors and the 

DMA delays of the SmartMem, queuing can play an important role, especially when 

the system is approaching the maximum capacity of a critical system resource. This 

capacity limit might either refer to the maximum memory transfer bandwidth, which 

is also packet size dependent as shown in Figure 74 (AutoRoute); or a maximum 

packet rate as in case of the different processor bottlenecks shown in Figure 68, 

Figure 71 and Figure 73. However, in a real packet forwarding system, packets with 

all sorts of different packet sizes will be present at the same time and it may happen 

that on a very small time scale both data rate and packet rate maxima may be 

exceeded by a sequence of short or long packets, while over a longer timeframe the 

traffic might still be forwarded in a lossless fashion. 

In the following sections, I will therefore present a series of average latency 

measurements plotted against an increasing amount of traffic for the Reference and 

FlexPath scenarios described before. As we have seen in previous results, 

combining the processing power of both PowerPCs with the FlexPath forwarding 

software exceeds the memory access bandwidth for packets larger than 512 bytes. 

Therefore, I decided to run these measurements with only the data plane processor 

forwarding packets (using the reference software from chapter 6.4 or the FlexPath 

software using both CII and CIO) and AutoRoute in addition to the FlexPath software 

processing. 



Chapter 6 - FlexPath NP Demonstrator 

  197 

The Reference software and FlexPath without AutoRoute measurements were 

stimulated with the 01-CPU and 10-CPU flows, each carrying 50% of the aggregate 

traffic and using a simple IMIX [105] packet size distribution, i.e. packet sizes are not 

any longer uniform but randomly generated with a distribution of 64B:576B:1518B 

packets of 7:4:1. For the FlexPath measurements with AutoRoute, the 01-AR and 

10-AR flows are added, carrying half of the AutoRoute traffic share each, the 

remainder of the traffic is generated by the 01-CPU and 10-CPU flows. 
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Figure 76: Reference and FlexPath System Latencies for IMIX Traffic (Part I) 

Figure 76 shows a lower part of the measurements with aggregate offered traffic 

load increasing from 75 Mbps in 75 Mbps increments to 975 Mbps. At aggregated 

loads below 200 Mbps, the system is in underload in all measured scenarios, and 

the latencies on the three different paths through the NP system are minimal. For the 

AutoRoute packets the latency is 11.8 µs, the Reference software forwards them in 

26.2 µs and the FlexPath software with all possible hardware-offload features 

accomplishes the task in 18.4 µs. The figures are measured by the network tester 

from transmission over network tester port to reception on the network tester, i.e. 

includes all transmission and MAC delays, queuing delays, DMA, latency of the 

FlexPath NP hardware pipeline and the software processing latency. 

As the offered load in the reference measurement exceeds 225 Mbps, the processor 

is not any longer capable to process the incoming packets. The buffers in the 

Packet Distributor fill up and the latency levels off at 320 µs. If the traffic load is 

further increased, the system latency, which is only recorded for the actually 

forwarded packets, remains constant although an increasing share of packets is 

discarded by the NP. 
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A similar effect can be observed for the FlexPath software measurement, however, 

due to the lower processing latency (remember that FlexPath is able to forward 

packets at twice the rate as the reference solution!) the cutoff point, where packets 

start being queued in front of the processor complex is shifted to 375 Mbps. A more 

gradual increase of the average latency can be observed, visualizing the range, in 

which the Packet Distributor queues are temporarily holding some descriptors, but 

are regularly emptied, e.g. when the processor is able to catch up with the load 

during reception of one or several maximum size packets. The maximum latency of 

roughly 190 µs is reached only beyond 675 Mbps. 

When introducing AutoRoute traffic into the traffic mix, the cutoff points, when the 

processors starts being overloaded is moved further to the right, as the processing 

capacity of the NP system is increased. The processing latency of the AutoRoute 

packets slowly increases with rising amounts of traffic because of congestion on the 

PLB bus and memory interface. In addition, collisions in the Traffic Manager, when 

CPU packets and AutoRoute packets reach the egress data path pipeline at the 

same time also increase the latency. The almost parallel increase of the 50% 

AutoRoute measurement (light blue curves in Figure 76) beyond 750 Mbps suggests 

that the system is again approaching the memory access bandwidth bottleneck, 

which can be seen when comparing the scenarios under higher load as shown in 

Figure 77. 
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Figure 77: Reference and FlexPath System Latencies for IMIX Traffic (Part II) 

For the two measurements with 50% and 75% AutoRoute traffic share, a steep 

increase of the latency can be observed around 1050 Mbps. Here, the Traffic 

Manager buffers are suddenly filled, as the packets are received (and forwarded) 
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faster than the transmit side of the SmartMem can retrieve the packets and packet 

contexts from memory. As the Traffic Manager acts as output buffer in the system, 

the queues are much deeper than those in the Packet Distributor, in order to 

efficiently tackle temporary output port contention and QoS scheduling. In turn, the 

latency penalty observed for packets that entered an almost full output queue is 

higher, and we can observe a saturation of the latency around 1100 µs, i.e. 1.1 ms. 

The measurement taken for 25% AutoRoute share shows a comparable effect 

beyond 1350 Mbps. This can be explained by the fact that much more packets are 

lost on the overloaded CPU path, and thus the overloaded processor works like a 

policer in front of the egress pipeline of the NP. 

In the non-AutoRoute scenarios (red and black curves in Figure 77), the forwarding 

performance of the single CPU is not sufficient to saturate the memory, and thus the 

latency of the packets remains almost constant at the level described in Figure 76. 

6.5.5. Packet Loss 

In order to better evaluate the effects of packet loss in the overloaded queues, 

Figure 78 plots a "transfer function" of the traffic for the same scenario as described 

before.  
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Figure 78: Packet Transfer Function for FlexPath with 25% AutoRoute 

Here, the x-axis is again showing the aggregate of all four traffic streams increasing 

from 100 Mbps to 1500 Mbps. On the y-axis the receive rate at the network tester is 

shown, differentiated by the path (or flows) that the respective packets should have 

taken through the FlexPath NP demonstrator. While the system is in underload, the 



Chapter 6 - FlexPath NP Demonstrator 

200   

forwarded load equals the transmitted load; the identity function is also shown as a 

black line in Figure 78. Just above 600 Mbps, the processor starts being overloaded 

and packets are lost. This effect is emphasized by the divergence of the red traffic 

share from the thick red line, which indicates the lossless case for 75% of the 

offered load (i.e. the share of packets going over the CPU path). As the traffic 

increases, the CPU is eventually able to forward more traffic, but the gap between 

the ideal (lossless) case and the actually forwarded traffic amount widens. 

In order to visualize the first losses on the AutoRoute path, the thick green line is 

introduced, which adds 25% of the offered load aggregate (i.e. the AutoRoute traffic 

share) to the (lossy) CPU forwarding rate. In this case, we observe the first 

divergence around 1420 Mbps, which is also well in line with the observations in 

Figure 77, where the 25% AutoRoute curves enter the memory bottleneck saturation 

around 1400 Mbps. When the memory bottleneck is first reached in the system, the 

total forwarded load is even reduced by further increasing the input load due to 

congestion that slows all NP modules accessing the shared memory resources. 
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Figure 79: Packet Transfer Function for FlexPath with 50% AutoRoute 

I have repeated the same measurements also for the 50% AutoRoute case, where 

the CPU bottleneck is reached later around 910 Mbps and the memory saturation 

starts earlier at roughly 1100 Mbps aggregated traffic. The results are shown in 

Figure 79. 
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6.6. Load Balancing Algorithms on FlexPath NP 

After having thoroughly investigated the individual performance benefits of the 

various hardware-offload features of a FlexPath NP, I would like to focus on the real-

world measurement results for the load balancing schemes discussed in chapter 5. 

The originally developed IPsec software stack, that was used for profiling in the 

simulations of [72] and measurements published in [106], has not yet been adapted 

to the current version of the SmartMem buffer manager with its optimized packet 

memory organization. Therefore, I will focus in the following only on QoS-aware IP 

forwarding (using the DSCP value in the IP header to differentiate high priority from 

best effort traffic classes). As we have no means to replay real-world Internet traces 

as used for the load balancing simulations, we again have to resort to using traffic 

generated with the network tester. However, the kind of fixed load, fixed pattern 

traffic streams used in the previous two chapters would not lead to variations in the 

traffic volume needed to demonstrate the adaptation effects inherent in each load 

balancing scheme. 

Table 23: Characteristics of Best Effort Traffic Flows 

Flow Group Packet Size (B) Active Burst Period 

(ms) 

Inter Burst Gap (in % of active 

burst period) 

1 78 100 5 

1 160 100 11 

1 256 100 19 

2 78 80 7 

2 160 80 13 

2 256 80 9 

3 78 140 17 

3 160 140 19 

3 256 140 27 

4 78 180 27 

4 160 180 25 

4 256 180 23 

 

In order to generate variations in the different logical connections that have to be 

addressed by the different load balancing techniques, the network tester is 

configured to generate traffic in a bursty fashion. For a certain period of time, a burst 

of same length packets are generated for a given period of time and a specified 

inter-packet gap, followed by a transmission pause, in which no packets are 

transmitted. By superposing several of these bursts with varying intensity and 

periods, a quasi-random behavior is achieved. Table 23 lists the timing parameters 

of four groups of logical flows with three distinct packet sizes per flow that is used 

for the best effort traffic class generation. Based on these traffic parameters, the 
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actual burst lengths (in packets) and inter-frame gaps (within a burst) can be derived 

for different average target bit rates. Due to the gaps within each flow group, short 

term bit rates are higher than the average bit rate and the hashing-based load 

balancing techniques are forced to rebalance the load, as the load of a specific hash 

bundle disappears when the respective flow enters its transmission pause. 

The previous chapter has shown that we exceed the capabilities of the memory 

interface and central interconnect structure when using both PowerPC processors 

in association with the FlexPath offload features. If a packet size distribution 

according to the IMIX definition [105] were applied, we would therefore obtain 

measurement results which are dominated by the performance bottleneck effects of 

the memory interface and the effectiveness of the traffic distribution among the 

processing entities would be concealed. Therefore, I chose to reduce the packet 

sizes to 78 bytes, 160 bytes and 256 bytes (from the original 64, 576 and 1518) 

while maintaining the 7:4:1 packet shares of the original IMIX. The smallest size 

packets have been increased from 64 to 78 bytes, so that the Spirent-specific 

measurement strings fit after a full TCP / UDP packet header. While this modification 

in the packet size distribution does not resemble the distribution found in the real 

Internet, I can now guarantee to first run into the processor bottleneck rather than 

the memory bottleneck. 

For the generation of the QoS-marked traffic, I generate two logical connections, but 

use a constant bit rate for each packet size, in contrast to the bursty pattern 

presented for the best effort traffic before. This stimulation may be motivated by the 

fact that in reality, non-best effort traffic is often subject to traffic shaping 

algorithms, where the packets of each service class are injected with certain 

predefined timing and bandwidth behavior (e.g. constant bit-rate (CBR)) in order to 

comply with respective service-level agreements in the actual network. 

For all following measurements, 10% of the traffic volume is marked with a non-zero 

DSCP, and 90% of the traffic volume is generated as bursty best effort traffic with a 

DSCP of 0x0. The total traffic volume is then increased from low levels until the 

system resources are fully saturated and packet latency and loss rates are evaluated 

in a differentiated fashion for each service class. 

6.6.1. QoS-aware AutoRoute 

The first set of measurements shows the results for a pure AutoRoute scenario, 

where all packets take the hardware path, but DSCP-marked packets are directed 

to the dedicated high-priority queues in the Traffic Manager. The corresponding 

HDGA tree is shown in Figure 80. Although the HDGA tree contains handling rules 

for differentiated packet spraying they will never actually be used as they refer only 

to lookup misses in the next-hop lookup engine, and the lookup table covers the 

entire address space. 
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Figure 80: HDGA Decision Graph for FlexPath NP AutoRoute Scenario with QoS 

Differentiation 

As there is no processor involved in AutoRoute forwarding, we can only expect to 

run into the memory access bandwidth bottleneck previously seen in the RFC2544 

throughput tests of our FPGA-based prototyping platform. 
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Figure 81: Packet Latency and Loss Rates per Traffic Class for AutoRoute Scenario 

When analyzing the measurement results, which are depicted in Figure 81, we see 

an (almost) identical forwarding latency of 5.9 µs for both traffic classes at 27 Mbps 

aggregate average input, which is increasing to 7.6 µs at the 440 Mbps 

measurement. After this point, we are encountering first congestion effects in the 

egress part of the NP, and the best effort packets suffer from additional output 



Chapter 6 - FlexPath NP Demonstrator 

204   

queuing delay compared to the QoS-marked packet streams. First packet losses 

can be observed at the 522 Mbps point, where 6% of the best effort packets are 

lost. Although both packet latency and packet loss increase significantly, the QoS-

marked packets can still be forwarded in a lossless fashion and with a latency of 

less than 23 µs due to the classification in the Path Dispatcher and subsequent 

assignment to a strictly prioritized queue in the Traffic Manager. 

6.6.2. QoS-aware Packet Spraying 

In the following, I will reintroduce the processors for the IP forwarding task, and 

compare the key performance figures for both packet spraying and HLU-based 

dedicated, flow-specific load assignment. These two schemes have been identified 

in the simulations laid out in chapter 5, to be the ideal candidates for processing 

stateful and stateless networking applications respectively. Especially in traffic 

conditions, where we observe short-term load variations (i.e. bursts), we can expect 

higher packet loss and latencies for the dedicated assignment performed with HLU 

compared to packet spraying. The modified HDGA graph for this setup is shown in 

Figure 82. 
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Figure 82: HDGA Decision Graph for FlexPath NP Packet Spraying Scenario with QoS 

Differentiation 

Figure 83 shows the performance differentiated for the two traffic classes while the 

system is in underload. The packet latency for both traffic types is equally increasing 

from 11.1 µs to 11.8 µs for the 130 Mbps measurement point. From there on, the 

best effort packets start experiencing longer delays, as occasionally packets have to 

wait for higher priority packets to be serviced during bursts that briefly exceed the 

processing performance of the two PowerPC processors. However, the queues 

provisioned in the Packet Distributor are dimensioned sufficiently large in order to 

balance out these bursts. 
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Figure 83: Packet Latency and Loss Rates per Traffic Class for Prioritized Spraying 

Scenario (Lossless Part) 

First packet losses can be observed at the 253 Mbps measurement point, where the 

latency of the best effort packets rises significantly from 14 µs to 30 µs, and the 

system drops 0.96% of the best effort packets. Figure 84 shows the system 

behavior for measurements beyond this point. 
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Figure 84: Packet Latency and Loss Rates per Traffic Class for Prioritized Spraying 

Scenario (Full Range) 
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As the system is offered increasing traffic on the input interfaces, the PowerPC 

processors are no longer able to cope with the load and packet descriptors of best 

effort packets are dropped in the Packet Distributor. Throughout the entire 

measurement range, the whole offered QoS-marked traffic can be forwarded in a 

lossless fashion, as a strict priority scheme is applied in the Packet Distributor. The 

latency of the QoS packets also remains below 15 µs, suggesting that there is (still) 

no bottleneck in the egress side of the NP; we have previously observed first 

congestion effects in the AutoRoute scenario beyond 520 Mbps. 

6.6.3. Spraying and HLU (S&H) 

Finally, I show measurements for a scenario, where the QoS-marked packets are 

still sprayed among both processors with high priority, but the best effort traffic is 

now assigned using the HLU load balancing algorithm. This setup effectively 

represents the S&H load balancing technique. However, the HLU load balancing is 

applied to the same stateless IP forwarding traffic as packet spraying, as our 

demonstrator implementation does not support IPsec traffic. The corresponding 

HDGA graph is depicted in Figure 85. 
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Figure 86: Packet Latency and Loss Rates per Traffic Class for S&H Scenario 

In contrast to the scenario with packet spraying, the best effort traffic suffers from a 

latency penalty of roughly 3 µs also in purely underload situations. This can be 

explained by the fact that during bursts of packets that belong to the same flow, 

successive packets are now not served by both processors - leading to a minimal 

latency - but the processor currently assigned the flow processes all incoming 

packets in sequence. The other processor might even remain idle during these 

times. Figure 57 in section 5.3.2 has already predicted this increased forwarding 

latency of HLU in comparison to packet spraying. Of course, the dedicated mapping 

of flows to processors is desired when considering stateful networking applications, 

as a distribution of the packets of the same connection among multiple processors 

causes significant synchronization overhead and data consistency problems. In turn, 

the available processor resources may not be maximally utilized for all points in 

time. In addition to the increased latency of best effort packets, a small amount of 

packet loss can be observed even for the lowest offered load values. The loss is 

slowly rising from 0.26% at 54 Mbps to 0.55% at 156 Mbps and is to be compared 

with the range of minimum packet loss obtained from the HLU simulations in Figure 

56. 

Beyond the 182 Mbps measurement, the packet loss and latency for best effort 

flows is increasing much steeper - the processing limit of the two PowerPC 

processors for this type of traffic is reached. Each individual processor is pushed 

into overload during the packet bursts, as the load during these peaks can not be 

distributed over all processors in the system. In comparison, the spraying scenario 
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started losing packets at 254 Mbps, which is 39% more offered traffic, and shows 

the "pooling gain" effect that can be exploited by packet spraying. 

The packet latency for the QoS-marked packets, which are still forwarded by 

spraying through a highly prioritized queue in the Packet Distributor, is slowly 

increasing to 15 µs at 476 Mbps. This latency is even slightly smaller than that 

observed for the QoS packets in the spraying scenario (Figure 84), as the larger 

packet loss rates for the best effort traffic class relieve the memory and interconnect 

resources in the egress part of the NP. 
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6.7. Conclusions 

In this chapter, I have presented a full-featured FlexPath NP prototype 

demonstrator, which combines all FlexPath NP-specific hardware modules with two 

PowerPC processors and the SmartMem DMA engine in a single FPGA design. As 

such, the feasibility and implementability of the previously presented concepts could 

be proven. Measurements performed with the FPGA demonstrator show the 

performance of the FlexPath NP concept and allow comparisons with the previously 

predicted behavior through system simulations. 

At first, a reference measurement with the two PowerPC processors was made in 

order to obtain the baseline performance of a conventional processor cluster 

architecture in the same system environment as the implemented FlexPath NP. As 

both the packet processing software and the hardware platform have improved 

significantly compared to the initial prototype used for calibrating the system-level 

simulations (cf. section 3.3.2), the current demonstrator achieves almost triple 

throughput, but the general behavior is still consistent with that predicted by the 

system simulations. 

The hardware-offload possibilities present in a FlexPath NP environment have been 

explored extensively and it could be shown that the combined offload provided by 

Pre- and Post-Processing units is able to double the performance of the NP 

compared to the reference scenario. 

The AutoRoute measurements were all memory-constrained, i.e. the full 

performance of the ingress and egress data processing pipelines could not be 

exploited due to memory access bandwidth limitations through the PLB bus and the 

attached shared dynamic memory. Still, for smallest size packets the throughput on 

the AutoRoute path was measured to be 5.2 times that of a single PowerPC 

processor. In addition, the reduced processing latency of AutoRoute in comparison 

to processor-forwarded packets could be shown. 

Finally, I have presented measurements that illustrate QoS-aware forwarding and 

load balancing strategies in a FlexPath NP. While I could not stimulate the prototype 

with the same backbone traces used in the load balancing simulations of chapter 

5.3, the trends observed during the load balancing simulations were confirmed with 

the available artificial traffic generated by our lab equipment. 

The presented measurement results therefore underline the validity and 

effectiveness of the FlexPath NP concept. In addition, we have identified severe 

bottlenecks in the central interconnect and shared memory subsystem of the 

prototype, that would obstruct further scaling of the system towards more 

processor cores and a higher forwarding performance. However, this also yields 
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valuable feedback and motivates further research based on the FlexPath NP results 

about how to overcome these challenges. 
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7. Conclusion 

7.1. Contributions of this Thesis 

The current dissertation has presented three major contributions to the state-of-the-

art in the network processor field: 

FlexPath NP Architecture: Based on observations of current network processor 

architectures and networking applications, the FlexPath NP architecture has been 

proposed. The FlexPath NP improves the performance of the network processor by 

offloading simple, recurring tasks from programmable resources to dedicated 

hardware units.  

– Even when packets are still to be processed by processor cores, the implemented 

hardware offload in the FPGA-based prototype showed that the plain IP 

forwarding performance of the available PowerPC processors could be doubled 

by making use of the Pre- and Post-Processor units in the FlexPath NP. 

– In addition, a full hardware offload is proposed for simple applications (AutoRoute) 

that could be used for significant shares of the overall traffic traversing a network 

processor, depending on its location and function within the network. The 

AutoRoute path provides a hardware pipeline architecture that operates at 

aggregated line speed and it is able to forward packets with significantly reduced 

latency compared to software-based forwarding. 

– In order to utilize the different processing elements in the NP chip efficiently, a 

packet classification is needed in the ingress data path pipeline of the FlexPath 

NP architecture. Apart from the before-mentioned CPU processing and 

AutoRoute paths, arbitrary combinations of dedicated hardware accelerators and 

software-programmable cores are supported. By moving packet analysis and 

classification into the ingress hardware data path, the most efficient traversal 

sequence for each expected packet type can be preconfigured. 

Path Dispatcher: The Path Dispatcher is the hardware unit in the ingress data path 

pipeline that executes the packet classification function in the FlexPath NP 

architecture under hard real-time constraints. In contrast to packet classification 

problems regarded in the prior art, the problem faced in the FlexPath NP Path 

Dispatcher requires a generalization to significantly more header fields. 

– The heterogeneous decision graph algorithm (HDGA) has been introduced, which 

may be used to execute the packet classification function in the Path Dispatcher. 

HDGA is a new multi-field packet classification technique that combines the 

advantages of several prior art classification techniques and blends them with 

some new ideas in order to solve the given classification problem. In a pre-
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processing step, the classification rule base is re-formulated with Boolean 

variables and compacted by logic minimization. The resulting rules are 

categorized into relatively static and heterogeneous contributions and more 

frequently changing homogeneous contributions. The static and heterogeneous 

parts are worked off in HDGA by an optimized decision graph. The homogeneous 

parts are efficiently handled by table and hash table lookups, which are 

seamlessly integrated into the decision graph traversal.  

– Apart from the concept of HDGA, an area-efficient hardware architecture for 

implementing the Path Dispatcher has been derived. The presented architecture 

allows a high degree of flexibility to change protocol details and rule base 

structure by dynamic updates to configuration memories. In addition, the 

proposed solution is scalable to larger problem sizes than those discussed within 

the scope of this work by introducing a pipelined architecture. 

– The concept and proposed architecture of the Path Dispatcher allows the system 

designer to include classification results from (off-chip) classification engines (e.g. 

TCAM-based NSEs). The external classifiers may communicate with the Path 

Dispatcher over the same interface as the table or hash table lookup accesses in 

HDGA. 

Load Balancing and QoS:  

The concept of assigning arriving packets to different processing paths in the NP 

system by the Path Dispatcher can also be extended to be used for load balancing. 

As packets of different traffic classes may be recognized and handled in a 

differentiated fashion, the Path Dispatcher capabilities may also be used to enable 

QoS concepts on a chip-wide level. 

– It has been shown that the available processor resources in a multi-core NP 

system can be utilized very efficiently when packet spraying is used as a load 

balancing strategy. Packet spraying has superior performance in comparison to 

dedicated load assignment based on flow hashes. However, packet spraying is 

only suitable for stateless networking applications. 

– For stateful traffic shares, hashing-based flow-to-processor mappings as used in 

state-of-the-art systems are required. After having analyzed the operational 

characteristics and implementation effort of two current load balancing schemes, 

HLU (hash lookup) is proposed as another adaptive, hashing-based load 

balancing technique. HLU produces similar performance as the two reference 

schemes from the prior art, but at a reduced implementation effort. 

– For systems that process both stateful and stateless networking applications, a 

combination of packet spraying and HLU is discussed. The combined scheme is 
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referred to as S&H and can be easily deployed in a FlexPath NP system, as the 

Path Dispatcher can distinguish stateful and stateless networking flows. Since the 

majority of the traffic belongs to the stateless application class, the additional 

performance benefits associated with packet spraying dominate the overall 

system behavior in S&H. 

– The Path Dispatcher may be used to prioritize traffic before it reaches the central 

processor complex. Therefore, QoS features may be implemented more 

effectively in a FlexPath NP in comparison to conventional NP approaches, where 

the differentiation has to be performed by software resources. The classification 

capabilities of the Path Dispatcher give us the opportunity to assign the traffic 

streams to separated and differently prioritized queues without CPU intervention. 

Therefore, high-priority traffic may bypass lower-priority packets in the ingress 

data path before even reaching the central processing elements. 
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7.2. Outlook to Further Work 

The present dissertation has focused mainly on the hardware-offload elements in 

the ingress data path pipeline of the FlexPath NP architecture. Together with the 

efforts in the egress data path pipeline and the DMA engine, the conceptual benefits 

of the FlexPath architecture on an FPGA-based demonstrator have been shown. 

The performed measurements validate previous results obtained through system-

level simulation. Other important aspects of the NP system, like the programmable 

processor cores, interconnect and memory hierarchy, were just recruited from off-

the-shelf IP libraries or constrained by the available (commercial) FPGA 

development board. 

During initial simulations, we predicted memory access bandwidth limitations in the 

chosen architecture that would eventually limit the achievable throughput of the NP 

prototype. Through further optimizations in the SmartMem project [108] and by 

having better physical memory modules on the finally used Virtex-4 development 

board, the throughput of the system could be raised by 50% from 1 Gbit/s in initial 

simulations to 1.5 Gbit/s in the prototype implementation. However, for software-

based IP forwarding of large packets and the AutoRoute path, the memory interface 

becomes still saturated before the actual processing elements. In addition, in our 

demonstrator system with only two PowerPC processors, the shared system bus 

has to support already nine master and eight slave modules. This architecture is not 

scalable to a true multi- or even manycore system without running into serious 

congestion problems.  

Recent commercial NP architectures as presented in section 2.1.1.2 (e.g. Cisco [24] 

or Cavium [26]) feature parallel CPU clusters with 32 cores and more. However, in 

these systems conventional bus-based architectures have been replaced with 

crossbar switches. At the same time, academic NP projects (e.g. the GigaNetIC [33]) 

have considered NoCs (networks-on-chip) and tile-based processing clusters as a 

more scalable solution than bus-based multi-processor systems. 

In the following, I will outline some observations and proposals for further system 

improvements. They are addressing the identified bottlenecks concerning memory 

access bandwidth and shared medium interconnect. The demonstrated benefits of 

the FlexPath NP approach may only be exploited to the full extent, when the 

identified bottlenecks have been resolved. 

– For the system interconnect, NoCs and crossbar switches would certainly be 

straightforward solutions. However, both alternatives struggle with significant area 

consumption, as a system is scaled to a larger number of cores. For example, the 

switch boxes presented in the GigaNetIC consume the same area as a processor 

cluster with four processing elements. One NoC switch with a locally attached 
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processor cluster and one Ethernet MAC fill an entire FPGA in the prototyping 

platform presented in [33].  

– First conceptual approaches to resolving the memory access bandwidth 

bottleneck have been discussed between the FlexPath NP and SmartMem 

projects, without yet being fully elaborated. The current implementation is already 

based on interface definitions, which would allow the SmartMem DMA to store the 

packets (and probably also the packet contexts) in different locations on the chip, 

depending on the outcome of the Path Dispatcher classification. This allows 

moving the architecture from a centralized, shared memory system to a 

distributed memory system. In turn, the performance requirements for every 

individual memory component can be lowered.  

– The network processor architecture would become more scalable by grouping the 

programmable processing elements and certain dedicated hardware accelerators 

in clusters of limited size. The overall processing performance is achieved by 

replicating several smaller-scale clusters in the same fashion as proposed in the 

GigaNetIC ([33]). In order to address the area consumption and scalability issues 

of NoC-based systems, hierarchical NoCs [109] are one recently investigated 

alternative. Cluster-local memories are used to minimize congestion during packet 

processing and a hierarchically structured interconnect can provide an efficient 

system-wide communication. 

– For processor clusters, the packet data and context can be transferred to the 

cluster-local SRAMs (referred to as Header Buffer concept in [108]), which can be 

accessed by the processors through high-capacity crossbar connections. Such 

SRAMs provide a high memory access bandwidth for irregular access patterns, 

but they are limited in size. After processing, the packets may be transferred to an 

external SDRAM, as queuing delays caused by Path Control and Traffic Manager 

are significantly longer than those in front of the network processor complex and 

larger memories are required. However, the FIFO behavior of the output queues 

favor regular memory access patterns, which are well supported by the burst 

modes in current dynamic memories. AutoRoute packets may of course be stored 

in the external SDRAM directly as the Packet Descriptor bypasses the network 

processor complex. 

– The Path Dispatcher has to assign the incoming packet stream onto the available 

processor clusters. An enhanced SmartMem DMA and packet distribution system 

is required to forward the packets and contexts to the respective processing 

elements. One open problem would be to find an efficient way of supporting 

multi-hop processing paths in such a cluster-based, distributed memory NP. 

Packets traversing several processing elements in different clusters would cause 
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increased data copy operations between the different local memories and put 

additional stress onto the system-wide interconnect.  

– Another important issue would be how to manage globally shared control plane 

information, like e.g. the routing table, IPsec databases or connection-specific 

traffic shaping parameters.  

– Load balancing strategies would also have to be revisited, as the cluster regarded 

in the present thesis is assumed to have a uniform access to a globally shared 

packet memory. Different communication costs within and in between adjacent 

processor clusters would certainly influence the choice of suitable load balancing 

strategies for the proposed NP architecture. Packet spraying has been identified 

in the current thesis to be a very effective candidate for multi-processor load 

balancing, as it can exploit a pooling gain effect by distributing the packets over a 

multitude of parallel processors. However, if the performance constraints on 

interconnect and memory structures require a migration to a tiled processor 

cluster structure with local storage and hierarchical interconnects, packet 

spraying among all processors in the system is no longer feasible. Packet 

spraying would have to be constrained to be used only within each processor tile, 

in which typically between four and eight processor cores share a common 

memory. This would in turn decrease the potential pooling gain, which can be 

exploited by the spraying technique.  

A more detailed elaboration of the before mentioned approaches could not be 

covered within the scope of the FlexPath NP project and the current dissertation. 

However, I would consider these aspects as promising starting points for possible 

future research activities based on the results of the FlexPath NP and SmartMem 

projects. 
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Implementation Details of selected FlexPath NP-specific 

Functional Modules 

Pre-Processor 

As described in chapter 3.2, the Pre-Processor analyzes the incoming packets and 

extracts important header fields which will be used in further units of the NP. Figure 

87 shows the architecture of the Pre-Processor with the main dataflow and the most 

important external interfaces. The extraction happens in two overlapping functional 

stages while the packet is streaming in from the receive side interfaces.  

RX Port Scheduler

MAC Analyzer

FF

Bit Sel 1

Bit Sel 2

Bit Sel 3

Bit Sel 4

Control Unit

IPv4 FSM

IPv6 FSM

DynaCORE 

FSM

TCP FSM

UDP FSM

ESP FSM

Header Field 

Memory

 Length Analyzer Checksum Unit Discard Unit

P
a

c
k
e

t 
D

a
ta

D
 a

c
k

R
d

 e
n

P
o

rt
 #

Pre-Processor busy

MAC ok

Length ok
Checksum ok

Discard Pkt

Addr

Hdr Field

P
a

c
k
e

t 
D

a
ta

Context Assembler busy

SmartMem busy

Addr

Hdr Field

Pre-Processing Finished

(Ctx Valid / Discard)

Destination Address
Address Valid

RX MAC I/F

NH-Lookup 

Engine

Context 

Assembler

Pre-Processor

 

Figure 87: Abstracted Architecture of the Pre-Processor 

The first stage consists of an FSM analyzing the MAC layer information of the 

packet, i.e. frame integrity and L3 protocol field, while the later stage may complete 

processing of the previous packet. 

The second stage consists of a set of FSMs, one for each higher layer protocol, that 

are activated when the lower protocol level machine detects the corresponding 

higher layer protocol. In its current implementation, the Pre-Processor supports 

IPv4, IPv63, TCP, UDP, ESP and a proprietary tunneling protocol which was defined 

                                                
3 Partial implementation: IPv6 packets will be detected and identified with a special flag in 

the packet context, but no full parsing and context extraction has been implemented yet. 
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between the FlexPath group and the DynaCORE group at the university of Lübeck, 

in order to support a coupling of the FlexPath NP and DynaCORE demonstrators to 

demonstrate IPsec processing offload to a reconfigurable hardware [91]. 

The protocol-specific FSMs generate the control signals for four generic bit 

selectors. These bit selectors consist of multiplexers and registers and store a 

configurable slice in four bit granularity out of the current 32 bit input word. The 

results of two adjacent bit selectors can also be combined in order to extract header 

fields that span two adjacent input words. This is the case for example with the IPv4 

source and destination addresses, which are each constructed out of the 16 LSBs 

of the 7th (8th) word and the 16 MSBs of the 8th (9th) receive word, if the IP packet is 

transmitted in a standard Ethernet-II frame. The extracted header fields are 

subsequently stored in a local SRAM to be retrieved later by the Context Assembler 

unit (see chapter 0). If the arriving packet has an IP header, the destination MAC 

address is not only extracted and stored in the memory, but also forwarded on a 

lookup engine interface, that is used to model the behavior of a full-fledged IP next-

hop lookup accelerator, e.g. implemented by a network search engine ([53], [54]). A 

five bit packet ID (PID) is transmitted along with the address to later find 

synchronization of the extracted header fields and the lookup result in the Context 

Assembler. In the FPGA demonstrator implementation, the third byte of the IP 

address is used as an index into a lookup table that allows supporting the simplified 

routing scenario as described later in chapter 6.3. In addition to the extracted 

header fields, the Pre-Processor also generates a set of pre-classifying flags that 

indicate certain properties of the received packet towards downstream elements. 

Examples for such flags are IPv4 protocol, TCP protocol, UDP protocol, Control 

Plane protocol, Corrupt frame, etc. These status flags are stored in a single 32 bit 

word in the header field memory. 

While the FSMs in the Control Unit only control the extraction of relevant header 

fields out of the different protocol headers, three separate units perform verification 

of the packet length (matching the IP length field to the number of received bytes) 

and the IP header checksum. The Discard unit may be notified by the MAC 

Analyzer, Control Unit FSM, Length or Checksum unit in case of a detected error 

and will subsequently signal a corrupt frame and halts the execution of further 

packet analysis. 

In addition to the pre-processing functions described above, the final 

implementation of the Pre-Processor also includes a receive port scheduler, that 

controls the handshaking between the receive side MAC buffers and the ingress 

hardware processing pipeline. Internal backpressure signals from the Pre-Processor 

itself, Context Assembler and the SmartMem buffer manager are evaluated and if all 

attached modules are ready to receive further data, a new packet is read from the 

receive buffers, iterating through all attached ports in a round-robin fashion.  
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Once processing of the current packet has finished, the Context Assembler is 

notified of the completion and is given the PID, with which the corresponding 

extracted header fields can be retrieved from the Header Field Memory. 

Table 24 summarizes the stand-alone synthesis results of the Pre-Processor unit. 

Table 24: Stand-alone FPGA Synthesis Results for the Pre-Processor 

Resource Type Resource Quantity 

FPGA Slices 696 of 25,280 (2.75%) 

 Slice Flip-Flops 571 of 50,560 (1.13%) 

 Slice LUTs 1,250 of 50,560 (2.47%) 

FPGA BlockRAM memories 1 of 232 (0.43%) 

Critical Path 5.774 ns (i.e. 173.178 MHz) 

 

A more detailed description of the Pre-Processor and its implementation can be 

found in Stefan Lugmair's Master thesis [93]. 

Context Assembler 

The Pre-Processor generates initial packet context information as a protocol stack 

specific set of extracted header fields. As the protocol stack of a received packet 

changes, different fields will be extracted along with the uniformly defined flags. 

Depending on the protocol of the arriving packet, a lookup of the destination IP 

address may have been started by the Pre-Processor, and if so, the lookup might 

produce a match or miss in the routing table. The Context Assembler is used to 

consolidate all this information into a uniform format referred to as Raw Context in 

the following. Figure 88 shows the contents of the Raw Context, which is generated 

independently of the protocol stack of the arriving packet. Header fields or flags, 

which are not present in the current packet, are filled by the Context Assembler with 

zero values. 

Word 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0 LU Disc ESP AH UDP TCP IPv6 IPv4 Corr Opt Ctrl Own

0x1 IP Five-tuple / Three-tuple Hash (CRC-16)

0x2 Ethertype

0x3 Egr. Port Ingr. Port

0x4 IP DiffServ Codepoint

0x5 IP Total Length

0x6 IP Next Protocol

0x7 IP Source Address

0x8 IP Destination Address

0x9 TCP/UDP Source Port TCP/UDP Destination Port

0xA Ack Rst Syn Fin

0xB ESP SPI

0xC Next-hop (Egress) MAC Address

0xD  

Figure 88: Contents and Layout of Packet Raw Context 
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Figure 89: Abstracted Architecture of the Context Assembler 

The architecture of the Context Assembler unit is shown in Figure 89. The first task 

is to synchronize the results generated by the Pre-Processor and next-hop lookup 

engine. This is implemented by a set of first-word-fall-through FIFOs, which are 

analyzed by the Synchronization Unit FSM. If a packet contains an IPv4 header, the 

Pre-Processor initiates a lookup, which is indicated by the IP Address Valid signal in 

addition to the PID, which is forwarded with every piece of context information or 

packet descriptor throughout the ingress data path modules. The FIFOs store the 

respective PIDs. When the packet has been completely received and analyzed, the 

Pre-Processor sends another transaction consisting of PID and either a Discard or 

Context Ready signal to the Context Assembler. In case of a corrupt packet 

(Discard), no header fields and flags are stored for this packet in the Header Field 

Memory of the Pre-Processor. For packets with a valid IP address, the next-hop 

lookup engine delivers the lookup result (MAC address of downstream router and 

output port) along with a hit/miss information. 

The Synchronization Unit checks the PIDs of the head of the FIFOs, and when all 

results for the current packet have arrived, the Context Assembler FSM is triggered. 

If the packet is valid, the Context Assembler unit reads the extracted header fields 

from the Pre-Processor and appends additional fields appropriately in order to 
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achieve the prescribed Raw Context shown in Figure 88. The Raw Context is saved 

in local buffers in the Path Dispatcher and Context Generation Engine for later use. 

Once the Raw Context has been generated, another FSM controls the handover of 

the current PID to the Path Dispatcher in order to start the classification of the most 

recent packet. The stand-alone synthesis results for the Context Assembler unit are 

summarized in Table 25 below. 

Table 25: Stand-alone FPGA Synthesis Results for the Context Assembler 

Resource Type Resource Quantity 

FPGA Slices 487 of 25,280 (1.93%) 

 Slice Flip-Flops 250 of 50,560 (0.49%) 

 Slice LUTs 766 of 50,560 (1.52%) 

FPGA BlockRAM memories 0 of 232 (0%) 

Critical Path 6.756 ns (i.e. 148.021 MHz) 

 

Path Dispatcher 

Detailed descriptions of the concept and implementation of the Path Dispatcher unit 

have already been presented in chapter 4.4. The following section of the appendix 

presents the configuration interface of the Path Dispatcher, which is accessed 

through a slave attachment on the PLB bus. 

As described in section 4.4.2.4, the HDGA tree structure as presented in Figure 48 is 

stored in the Graph Node Memory (Figure 49). From the software driver perspective, 

the 211 bit wide memory is mapped to a PowerPC cacheline, which is a 256 bit 

structure. In a C-language level, the individual fields can be accessed through 

components of the packed struct as shown in Code Listing 2. The most significant 

45 bits will be treated as unused padding information.  
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struct HDGA_node 

{ 

 unsigned int padding0:45
4
; 

 unsigned int quart:1;  // flag indicating Quaternary Node 

 unsigned int mask0:32;  // binary or quaternary node 0x..0 

 unsigned int value0:32; 

 unsigned int oper0:3;  // 0:=, 1:<, 2:>, 3:!=, 4:Hash 

 unsigned int is00Ptr:1; 

 unsigned int is01Ptr:1; 

 unsigned int PtrAID00:10; // max. 10b Ptr / 6b AID 

 unsigned int PtrAID01:10; 

 unsigned int CtxA00_0:4;  // next stage ALU0 word 

 unsigned int CtxA00_1:4;  // next stage ALU1 word 

 unsigned int CtxA01_0:4;  // next stage ALU0 word 

 unsigned int CtxA01_1:4;  // next stage ALU1 word 

 unsigned int mask1:32;  // binary node 0x..1 

 unsigned int value1:32; 

 unsigned int oper1:3;  // 0:=, 1:<, 2:>, 3:!=, 4:Hash 

 unsigned int is10Ptr:1; 

 unsigned int is11Ptr:1; 

 unsigned int PtrAID10:10; // max. 10b Ptr / 6b AID 

 unsigned int PtrAID11:10; 

 unsigned int CtxA10_0:4;  // next stage ALU0 word 

 unsigned int CtxA10_1:4;  // next stage ALU1 word 

 unsigned int CtxA11_0:4;  // next stage ALU0 word 

 unsigned int CtxA11_1:4;  // next stage ALU1 word 

} __attribute__((packed)); 

Code Listing 2: Packed C-struct of Graph Node Memory Contents 

The hash table lookup operations that can be interleaved in HDGA with the decision 

graph traversal have to be configured in two stages in accordance with the 

functional description in chapter 4.4.2.5. Similar as for the HDGA graph node 

contents, the information for the hash table memory can be packed into cacheline 

transfers, while the hash table configuration memory can be accessed with single 32 

bit words according to Code Listing 3.  

 

 

 

                                                
4 On 32 bit processors, padding fields larger than 32 bits must be split into several fields, e.g. 

here padding00:32; padding01:13;. The above code padding0:45; would not compile 

and is used as a shorthand notation to clarify the total need of 45 padding bits. 
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struct HashTableConfiguration 

{ 

 unsigned int padding0:7; 

 unsigned int Hash:1;  // Enables the CRC-16 calculation 

 unsigned int TruncSize:4; // Truncation width (0: 16 bits!) 

 unsigned int BaseAddress:16; // Hash Table Base Address 

 unsigned int CollRes:1;  // Enables Chained Coll. Resolution 

 unsigned int reserved:3;  // reserved for future extensions 

} __attribute__((packed)); 

struct hashtable_cr 

{ 

 unsigned int padding0:195; 

 unsigned int Chain_Valid:1; // 0: end of list is reached 

 unsigned int Hit:1;  // entry contains valid information 

 unsigned int isPtr:1; 

 unsigned int PtrAID:10;  // max. 10b Ptr/6b AID, as in tree 

 unsigned int Key:16;  // the original search key 

 unsigned int ChainPtr:16; 

 unsigned int CtxAddr_0:4; // next stage ALU0 word, if Ptr 

 unsigned int CtxAddr_1:4; // next stage ALU1 word, if Ptr 

 unsigned int reserved:8;  // reserved for future extensions 

} __attribute__((packed)); 

struct hashtable_ncr 

{ 

 unsigned int padding0:196; 

 unsigned int Hit0:1;  // first logical entry, 0x..0 

 unsigned int isPtr0:1; 

 unsigned int PtrAID0:10; 

 unsigned int CtxAddr0_0:4; 

 unsigned int CtxAddr0_1:4; 

 unsigned int reserved0:8; 

 unsigned int padding1:4; 

 unsigned int Hit1:1;  // second logical entry, 0x..1 

 unsigned int isPtr1:1; 

 unsigned int PtrAID1:10; 

 unsigned int CtxAddr1_0:4; 

 unsigned int CtxAddr1_1:4; 

 unsigned int reserved1:8; 

} __attribute__((packed)); 

Code Listing 3: Packed C-structs of Hash Table Configuration Register and Hash Table 

Memory Contents 

Depending on whether the hash table features collision resolution, the 

hashtable_cr or hashtable_ncr struct has to be used to build the hash table. 

Code Listing 4 shows the layout of the individual components in the Translation 

Memory, which is used after HDGA classification in order to retrieve the 

classification result from the ActionID delivered by the HDGA leaf node. 
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struct translation 

{ 

 unsigned int padding:211; 

 unsigned int TrafficClass:1; // 0: low latency, 1: high latency 

 unsigned int Prio:1;  // 0: low priority 

 unsigned int Num_Dest:2;  // 1:1, 2:2, 3:3, 0:4 destinations 

 unsigned int PtrIM:9;  // CGE Pointer/Instruction Memory 

 unsigned int ListofDest:32; // NP Processing Path 

} __attribute__((packed)); 

Code Listing 4: Packed C-struct of Translation Memory Contents 

As the previous paragraphs have shown, the configuration data of the Path 

Dispatcher unit comprise 32 bit values (or less) for the configuration registers and 

hash table configuration memory and larger units for the remaining memory 

contents. In order to support (incremental) updates of the Path Dispatcher data 

structures, while the system is running, it is important that the individual contents 

can be written in an atomic operation. Writing less than 32 bits can be achieved by a 

single bus transfer, and the updated content of the corresponding memory is 

available in the subsequent cycle, due to the dual-port BlockRAM implementation. 

However, writing more than 32 bits from a processor cannot be achieved in a single 

cycle that easily. The Bus Attachment FSM therefore contains a 256 bit register that 

can hold a full processor cacheline, which will be transferred in a four doubleword 

burst transfer across the PLB. When the control plane processor wants to write a 

new configuration, this transfer register will be filled during the consecutive bus 

cycles, and when the transfer is finished, the entire data can be written to the actual 

BlockRAM memory in a single cycle. The inverse behavior is applied, when the 

control plane processor wants to read back configuration information: as the 

address is transferred over the PLB, the Bus Attachment reads the configuration 

memory contents into its 256 bit transfer register and can then transmit the 

requested information in subsequent cycles. 

When defining the address map of the Path Dispatcher, care must be taken to 

include address ranges for both cached and non-cached accesses in order to 

perform the single-cycle writes (uncached) for the configuration registers and 

memories with less than 32 bits and cacheline transfers for the other memories. As 

the PowerPCs available in the Virtex-4 FPGAs have a cache map that allows 

enabling / disabling the caching behavior at a granularity of 128 MB, the address 

range for the Path Dispatcher has to be placed in the center of a 256 MB chunk of 

addresses. Table 26 shows the currently implemented address map of the Path 

Dispatcher demonstrator, with the configuration addresses mapped around the 

0xA7… (uncached) and 0xA8… (cached) address blocks. 
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Table 26: Address Map of Path Dispatcher 

PLB Base  

Address 

PLB High  

Address 

Impl.  

Range 

Contents Access 

Mode 

0xA7FF FF00 0xA7FF FF78 16 WD Hash Table Configuration Memory 32 bit 

0xA7FF FF80  1 WD HDGA Root Node 32 bit 

0xA7FF FF88  1 WD Root CtxAddr (ALU0) 32 bit 

0xA7FF FF90  1 WD Root CtxAddr (ALU1) 32 bit 

0xA800 0000 0xA800 07E0 64 CL Translation Memory 256 bit 

0xA801 0000 0xA801 3FE0 512 CL Graph Node Memory 256 bit 

0xA802 0000 0xA802 BFE0 1,536 CL Hash Table Memory 256 bit 

 

In order to avoid byte steering effects that occur when 32 bit accesses are 

performed over the 64 bit PLB bus, the addresses for the Hash Table Configuration 

Memory and Registers are positioned on 64 bit multiples. With respect to mapping 

PLB addresses to physical addresses for the Hash Table Configuration Memory, we 

receive: 

Table 27: Mapping PLB to Physical Addresses for Hash Table Configuration Memory 

PLB Address Physical Address Contents 

0xA7FF FF00 0x0 Configuration of first logical hash table 

0xA7FF FF08 0x1 Configuration of second logical hash table 

0xA7FF FF10 0x2 Configuration of third logical hash table 

0xA7FF FF78 0xF Configuration of sixteenth logical hash table 

 

The wider memories do not incur the byte steering problem, but for the graph node 

memory and hash table memory, the additional mapping between logical addresses 

(that are used in the address / pointer fields within the respective data structure) and 

the physical address of the BlockRAM memories has to be considered. The different 

address relations are shown in Table 28 and Table 29. 

Table 28: Address Relations for Graph Node Memory 

PLB Physical Logical Contents 

0xA801 0000 0x000 0x000 Binary Nodes: 0x0 & 0x1; Quaternary Node: 0x0 

0xA801 0020 0x001 0x002 Binary Nodes: 0x2 & 0x3; Quaternary Node: 0x2 

0xA801 0040 0x002 0x004 Binary Nodes: 0x4 & 0x5; Quaternary Node: 0x4 

0xA801 3FE0 0x1FF 0x3FE Binary Nodes: 0x3FE & 0x3FF; Quaternary: 0x3FE 

 

 



Appendix 

230   

Table 29: Address Relations for Hash Table Memory 

PLB Physical Logical (assumed base 0x0, 

w/o Collision Resolution) 

Logical (assumed base 0x0, 

w/ Collision Resolution) 

0xA802 0000 0x000 Offsets 0x000 & 0x001 Offset 0x000 

0xA802 0020 0x001 Offsets 0x002 & 0x003 Offset 0x001 

0xA802 0040 0x002 Offsets 0x004 & 0x005 Offset 0x002 

0xA802 BFE0 0x5FF Offsets 0xBFE & 0xBFF Offset 0x5FF 

 

SmartMem 

In contrast to the description of the Buffer Manager DMA engine during the system 

simulations (chapter 3.3.2.2), we have embedded a more advanced DMA engine into 

our final FPGA demonstrator (chapter 6). This advanced version is referred to as 

SmartMem Buffer Manager and is described in detail in Daniel Llorente's 

dissertation [108]. The following paragraphs briefly summarize the main features of 

the SmartMem architecture and the interfaces to the other FlexPath NP modules. 
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Figure 90: Abstracted Architecture of the SmartMem Buffer Manager (DMA) 

When a packet is received from the link, the packet data is forwarded to the 

SmartMem RX Unit in parallel to the Pre-Processor. The packet data is stored in a 

BlockRAM buffer in the Segmentation Unit and is then partitioned to fit into a single 

or a combination of two segments, from a pool of 256 B, 512 B, 1024 B, and 2048 B 

segments. After segmentation, the packet data is forwarded to the Storing Unit, 

which stores the packet data in the DDR-SDRAM over the PLB master attachment. 

The Storing Unit requests the necessary address segments from the Address 

Manager, which maintains a cache of empty segment pointers. After the complete 

packet has been stored, the Packet Descriptor (see Figure 91) is generated, which 



Appendix 

  231 

contains the addresses and segment sizes of the current packet along with other 

information and is passed through the remaining modules of the FlexPath NP. 
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Figure 91: Structure and Contents of the Packet Descriptor 

While the segmentation and storage of the current packet take place, the Pre-

Processor, Context Assembler and Path Dispatcher also work on the packet data or 

the generated packet context in parallel. The classification result is transmitted from 

the Path Dispatcher to the SmartMem after classification. It was planned, that in a 

later implementation the SmartMem uses these classification results in order to 

optimize the DMA by storing the packets in different memories, depending on their 

further processing path. E.g. AutoRoute packets might be kept in a different 

memory than packets bound for the processor complex or even hardware 

accelerators, which might be implemented with additional local memories. However, 

such a feature has not yet been implemented, but the data flow of the classification 

results through the SmartMem already support that feature. 

When both the Packet Descriptor and the classification result of the current packet 

are present, the whole information is passed on to the Context Generation Engine. 

After the packet has been processed by the NP and the Traffic Manager determines 

that a packet has to be transmitted, the corresponding packet descriptor is passed 

to the TX Unit of the SmartMem. The Fetching Unit analyzes, if the packet has a 

valid output context (CIO) for the Post-Processor, and subsequently fetches both 

the output context and the packet data from the respective memory locations. 

Afterwards, the (now unused) segment addresses are returned to the Address 

Manager, so that they are freed (discarded) and are made available for future use. 

When the data is sitting in the transmit buffer, transmission to the Post-Processor is 

initiated by using a simple handshaking protocol. 

The stand-alone synthesis results for the SmartMem buffer manager are 

summarized in Table 30. The figures include the two LIS-IPIF master interfaces and 

one LIS-IPIF slave as shown in Figure 90. 
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Table 30: Stand-alone FPGA Synthesis Results for the SmartMem Buffer Manager 

Resource Type Resource Quantity 

FPGA Slices 3,354 of 25,280 (13.27%) 

 Slice Flip-Flops 2,951 of 50,560 (5.84%) 

 Slice LUTs 6,240 of 50,560 (12.34%) 

FPGA BlockRAM memories 23 of 232 (9.91%) 

Critical Path 8.713 ns (i.e. 114.771 MHz) 

 

Context Generation Engine 

The SmartMem was initially focused to optimize the storing efficiency of the packet 

data in a more generalized NP scenario. In consequence, there were initially no 

provisions made to perform the DMA operation for the packet context. As I have 

already described in chapter 3.3.2.2, Andreas Schipf had implemented a Context 

Generation Engine (CGE) [102] that either copied all extracted header fields and 

flags from the Pre-Processor into memory as Context Information Input (CII), or was 

able to write a pre-configured Context Information Output (CIO) with the instructions 

for the Post-Processor. The initial implementation was developed together with the 

previous version of the Buffer Manager that used linked lists of 64 byte segments to 

store data in main memory, and the context information was mapped to a separate 

linked list.  

As we decided to merge the FlexPath NP demonstrator with the efforts made in the 

SmartMem project, the interfaces for packet and context storage changed 

significantly. Instead of maintaining several linked lists for CII, CIO and packet data, 

we agreed on consolidating context and data into a shared memory space, by 

appending a context section of 128 bytes in front of the packet data section in the 

first segment. Still, the design of the SmartMem does not allow constructing CII or 

CIO depending on the current type of packet and to perform the DMA of the 

generated context information into the memory. 

In order to adapt the CGE to the current status of the ingress data path pipeline, I 

re-implemented the CGE to the following functional specification, which includes the 

later defined interactions between the SmartMem Buffer Manager, Ingress Path 

Control and Packet Distributor. Figure 92 shows the abstracted architecture of the 

current version of the CGE. 
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Figure 92: Abstracted Architecture of the Context Generation Engine 

The main data flow through the new CGE is organized in three steps. In the first 

step, the classification result passed on by the SmartMem buffer manager is used to 

determine which kind of context information has to be generated.  

Word 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0 LU Disc ESP AH UDP TCP IPv6 IPv4 Corr Opt Ctrl Own

0x1 IP DiffServ Codepoint

0x2 IP Next Protocol

0x3 IP Source Address

0x4 IP Destination Address

0x5 TCP/UDP Source Port TCP/UDP Destination Port

0x6 Next-hop (Egress) MAC Address

0x7

0x8 IP Five-tuple / Three-tuple Hash (CRC-16)

0x9 Ethertype

0xA IP Total Length

0xB Ack Rst Syn Fin

0xC ESP SPI

0xD Head of List of D

0xE List of Destinations  

Figure 93: Standard Contents and Layout of Context Information Input (CII) 

If the packet is destined for the processor complex, a CII has to be generated 

basically by copying the Raw Context into the reserved segment in front of the 

packet data. Figure 93 shows the standardized layout of the CII. The CII is basically 

a permutation of the Raw Context (as shown in Figure 88). While the Raw Context 

adheres to the layering of the protocols in the packets, and corresponds to the 

sequence, in which the fields are typically extracted from the arriving packet, the CII 

is optimized for the packet processing in the PE complex. The relevant fields for 

packet forwarding are all concentrated in the first eight 32 bit words, which 

corresponds to a single PowerPC cache line. Less frequently needed information 
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follows in the remainder of the CII. At the end of the CII, a list of destinations with up 

to four entries (at eight bits each) allows distribution of the packets by means of the 

packet distributor, also in multi-hop scenarios. 

However, if the packet is destined for AutoRoute, a CIO has to be generated that 

contains the Assembler-like instructions necessary for the Post-Processor to 

perform the required packet modifications. Here, the contents are obtained from the 

Data Memory, which can be pre-configured with arbitrary instructions by the Control 

Plane processor. Of course, the lookup result containing the next-hop router's MAC 

address still has to be copied from the Raw Context Memory as an argument for the 

first replace instruction. Figure 94 shows an example for an AutoRoute CIO in a plain 

IPv4 forwarding scenario. 

Word 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0 Replace @ 0x0 for 6B

0x1 Next-hop (Egress) MAC Address

0x2

0x3 Replace @ 0x6 for 6B

0x4 Source MAC Address of Egress Interface

0x5

0x6 Decrement @ 0x16 for 1B (TTL field)

0x7 IP Checksum Calculation @ 0x0E  

Figure 94: Standard IPv4 AutoRoute Context Information Output (CIO) 

It is also possible to skip context generation altogether by specifying a context 

length of zero, in this case, only the later described modifications in the Packet 

Descriptor are performed. This feature helps to measure the performance of the 

system without the FlexPath-specific context information and this has been used for 

the reference scenario measurements described in chapter 6.4. 

In the second processing step, the context information is stored in the system 

memory at the address extracted from the packet descriptor using the LIS-IPIF 

master interface of the CGE. 

Finally, the CGE completes the following fields in the packet descriptor (see Figure 

91): 

– The 11 least significant bits of the IP five-tuple hash value are added as Flow 

Hash value for later use by the Ingress / Egress side Path Control 

– Traffic Class and Priority bits are set in accordance with the classification result 

obtained from the Path Dispatcher 

– CII or CIO bits are set if a valid CII or CIO context have been stored in memory 

– Ingress and Egress MAC interface information is added in accordance with the 

information obtained from the next-hop lookup engine and the Pre-Processor 
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– Context Offset, which describes the offset (in bytes) from the beginning of the first 

packet segment, is set to zero, as the CGE starts storing any context from the 

beginning of the segment 

– Context Length, which describes the length of valid context information is 

updated in accordance with the generated context 

Table 31 shows the synthesis results of the Context Generation Engine including 

both LIS-IPIF interfaces (Master and Slave). 

Table 31: Stand-alone Synthesis Results for the Context Generation Engine 

Resource Type Resource Quantity 

FPGA Slices 759 of 25,280 (3.00%) 

 Slice Flip-Flops 961 of 50,560 (1.90%) 

 Slice LUTs 1,201 of 50,560 (2.38%) 

FPGA BlockRAM memories 5 of 232 (2.16%) 

Critical Path 5.541 ns (i.e. 180.486 MHz) 

 

Traffic Manager 

As the packet descriptors leave the egress side Path Control in the correct 

sequence, they have to be queued to resolve output port contention, which might 

happen as the aggregated processing capabilities of the NP may exceed the 

maximum transmission bandwidth of a single Gigabit Ethernet interface. In addition 

to resolving contention, the implemented Traffic Manager also implements a strict 

priority-based round robin transmission scheduling that allows a simple form of QoS 

implementation. The abstracted architecture of the Traffic Manager is depicted in 

Figure 95. 

The arriving packet descriptors are enqueued into the correct queue evaluating the 

egress port and priority bits of the packet descriptor (see Figure 91). Each queue 

can hold a maximum of 128 packet descriptors, but the capacity can be reduced by 

specifying a generic parameter in the VHDL code. If a packet descriptor would have 

to be assigned to a full queue, the descriptor will instead be discarded through the 

Traffic Manager's PLB LIS-IPIF master interface. 
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Figure 95: Abstracted Architecture of the Traffic Manager 

The Transmit Scheduler determines which packet descriptor is to be sent next by 

evaluating the backpressure signals from the SmartMem transmit side interfaces, 

queue fill level and the leaky buckets that are used to limit the transmit rate on each 

port to 1 Gbit/s. If a port still has transmission capacity, the high priority queues will 

be worked off first, iterating between both ports (i.e. round-robin) if packets are 

present for both ports. Low priority packets can be transmitted on the other port, if 

there are no packets in the high priority queue and more high priority packets 

cannot be transmitted due to an overflow in the leaky bucket for the respective port. 

Table 32 summarizes the resource consumption and synthesis results of the Traffic 

Manager. 

Table 32: Stand-alone FPGA Synthesis Results for the Traffic Manager 

Resource Type Resource Quantity 

FPGA Slices 441 of 25,280 (1.74%) 

 Slice Flip-Flops 533 of 50,560 (1.05%) 

 Slice LUTs 689 of 50,560 (1.36%) 

FPGA BlockRAM memories 4 of 232 (1.72%) 

Critical Path 5.683 ns (i.e. 175.963 MHz) 
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RISC Reduced Instruction Set Computer 

ROBDD Reduced, Ordered  BDD, often simply referred to as BDD 

RSVP Resource Reservation Protocol 

RTCP Real-Time Control Protocol 

RTP Real-Time Protocol 

RX Receive 

S&H Spraying and  HLU, load balancing technique proposed in this 

dissertation 

SAD Security Association Database 

SDH Synchronous Digital Hierarchy, standardized optical transmission 

scheme by  ITU-T, used worldwide (except North America, see  

Sonet) 
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SDRAM Synchronous Dynamic  RAM 

SGMII Serial Gigabit Media Independent Interface 

SIP Session Initiation Protocol 

SLA Service Level Agreement 

SoC System-on-Chip 

Sonet Synchronous Optical NETwork, similar to  SDH and interoperable 

with SDH networks, standardized optical transmission scheme by  

ANSI used in North America 

SPC Serial-to-Parallel Converter 

SPD Security Policy Database 

SRAM Static Random Access Memory 

TCAM Ternary  CAM 

TCP Transmission Control Protocol (defined in  IETF RFC 793) 

TTL time-to-live, header field in  IP packets 

TX Transmit 

UDP User Datagram Protocol (defined in  IETF RFC 768) 

UMTS Universal Mobile Telecommunications System, 3rd generation mobile 

cellular network standard 

VHDL Very high speed integrated circuit Hardware Description Language 

VLAN Virtual  LAN 

VLIW Very Long Instruction Word, special type of processor architecture 

VoIP Voice-over-IP 

VPN Virtual Private Network 

WAN Wide Area Network 

WEP Wired Equivalent Privacy 

WLAN Wireless  LAN 

WPA Wi-Fi Protected Access 
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