
C
ER

N
-T

H
ES

IS
-2

01
8-

03
5

25
/0

4/
20

18

Evaluation of an IP Fabric network

architecture for CERN’s data center

Carles Garcia Cabot
Bachelor’s Degree in Informatics Engineering – Information Technologies

European Organization for Nuclear Research (CERN)

Supervised by Carles Kishimoto Bisbe

Department of Computer Architecture

Facultat d’Informàtica de Barcelona (FIB)

Universitat Politècnica de Catalunya (UPC) – BarcelonaTech

Supervised by José M. Barceló Ordinas

25/04/2018





Abstract

CERN has a large-scale data center with over 11 500 servers used to analyze massive

amounts of data acquired from the physics experiments and to provide IT services to

workers. Its current network architecture is based on the classic three-tier design and it uses

both IPv4 and IPv6. Between the access and aggregation layers the traffic is switched in

Layer 2, while between aggregation and core it is routed using dual-stack OSPF. A new

architecture is needed to increase redundancy and to provide virtual machine mobility and

traffic isolation.

The state-of-the-art architecture IP Fabric with EVPN is evaluated as a possible solution.

The evaluation comprises a study of different features and options, including BGP table

scalability and autonomous system number distributions. The proposed solution contains

eBGP as the routing protocol, a route control policy, fast convergence mechanisms and

an EVPN overlay with iBGP routing and VXLAN encapsulation. The solution is tested

in the lab with the network equipment currently used in the data center. The results are

satisfactory, however the equipment is found to lack the necessary resources to implement

this architecture at a large scale.

i



Resumen

CERN dispone de un centro de datos de grande escala con más de 11 500 servidores usados

para analizar masivas cantidades de datos adquiridos a partir de los experimentos y para

proveer servicios IT a los trabajadores. La arquitectura de red actual está basada en el

diseño 3-tier. Entre las capas de acceso y agregación el tráfico es conmutado en capa 2,

mientras que entre agregación y núcleo está enrutado usando OSPF dual-stack. Una nueva

arquitectura es necesaria para incrementar la redundancia y para proveer movilidad de

máquinas virtuales y aislamiento de tráfico.

La arquitectura IP Fabric con EVPN es evaluada como una posible solución. La evaluación

consiste de un estudio de diferentes características y opciones, incluyendo la escalabilidad

de la tabla BGP y distribuciones de números de sistema autónomo. La solución propuesta

contiene eBGP como el protocolo de routing, una política de control de rutas, mecanismos

de convergencia rápida y un overlay EVPN con routing iBGP y encapsulación VXLAN. La

solución es testeada en el laboratorio con el equipamiento de redes actualmente usado en

el centro de datos. Los resultados son satisfactorios, sin embargo se ha detectado que el

equipamiento no tiene los recursos necesarios para implementar esta arquitectura a gran

escala.

Resum

CERN disposa d’un centre de dades de gran escala amb més de 11 500 servidors utilitzats

per analitzar massives quantitats de dades adquirides a partir dels experiments i per proveir

serveis IT als treballadors. L’arquitectura de xarxa actual està basada en el disseny 3-

tier. Entre les capes d’accés i d’agregació el tràfic és commutat en capa 2, mentre que

entre agregació i nucli està enrutat utilitzant OSPF dual-stack. Una nova arquitectura és

necessària per incrementar la redundància i per proveir mobilitat de màquines virtuals i

aïllament de tràfic.

L’arquitectura IP Fabric amb EVPN és evaluada com una possible solució. L’avaluació

consisteix d’un estudi de diferents característiques i opcions, incloent l’escalabilitat de la

taula BGP i distribucions de números de sistema autònom. La solució proposada conté eBGP

com el protocol de routing, una política de control de rutes, mecanismes de convergència

ràpida i un overlay EVPN amb routing iBGP i encapsulació VXLAN. La solució és testejada

en el laboratori amb l’equipament de xarxes actualment utilitzat en el centre de dades.

Els resultats son satisfactoris, tot i això s’ha detectat que l’equipament no té els recursos

necessaris per implementar aquesta arquitectura a gran escala.

ii



Acknowledgements

I would like to thank Carles Kishimoto and the whole CE section for their support and

providing the opportunity to work and make an impact at CERN. I would also like to thank

José M. Barceló for his help and valuable advice.

iii





Contents

List of figures ix

List of tables xi

Acronyms xiv

I The project 1

1 Introduction 3
1.1 CERN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The data center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 7
2.1 Layer 2 architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Objective 11
3.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Possible obstacles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Plan 13
4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Tasks and schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.4 Action plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.5 Project budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Sustainability and social commitment 23
5.1 Environmental dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Economic dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3 Social dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.4 Sustainability matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

II The evaluation 25

6 IP Fabric features and options 27
6.1 Routing protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

v



6.2 Route control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.3 iBGP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.4 eBGP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.5 Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.6 Load balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.7 Point-to-Point networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.8 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.9 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 BGP table scalability 35
7.1 Leaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.2 Spines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.3 Super Spines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.4 Example scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

8 ASN distribution policy 41
8.1 ASNs in Leaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8.2 ASNs in Spines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8.3 ASNs in Super Spines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

9 Overlay 45
9.1 Network virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9.2 EVPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

10 Proposed solution 47
10.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

10.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

10.3 BGP table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

10.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

11 Advanced BGP tests 55
11.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

11.2 Route advertisement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

11.3 Traffic load-balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

11.4 Convergence time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

11.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

12 EVPN tests 67
12.1 Spirent tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

12.2 Netbench tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

12.3 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

12.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

vi



13 Conclusion 87
13.1 Evaluation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

13.2 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

13.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A Appendix: Python script to generate configuration 91

Bibliography 97

vii





List of Figures

1.1 Schema of the current architecture . . . . . . . . . . . . . . . . . . . . . 4

2.1 3-stage IP Fabric schema . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 5-stage IP Fabric schema . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.1 Gantt chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Brocade SLX 9540-48S . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Brocade ICX7750-48F . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.4 Brocade MLXe-16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6.1 Suboptimal paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.2 IP Fabric with clusters of 2 Spines . . . . . . . . . . . . . . . . . . . . . 30

6.3 IP Fabric without clusters . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.4 ECMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.1 Impact of suboptimal routes . . . . . . . . . . . . . . . . . . . . . . . . 38

8.1 eBGP fabric with a unique ASN for each Leaf . . . . . . . . . . . . . . . 42

8.2 eBGP fabric with repeated ASNs in each cluster . . . . . . . . . . . . . . 42

8.3 eBGP fabric with the same ASN in each Leaf . . . . . . . . . . . . . . . 43

9.1 VXLAN frame encapsulation . . . . . . . . . . . . . . . . . . . . . . . . 46

10.1 Brocade switches during test . . . . . . . . . . . . . . . . . . . . . . . . 48

10.2 Spirent during test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

10.3 Basic BGP tests setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

11.1 Physical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

11.2 Logical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

11.3 Simulation schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

12.1 Juniper QFX switches during test (most cables are unrelated) . . . . . . . 67

12.2 Spirent test topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

12.3 Spirent flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

12.4 Netbench test topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

12.5 Number of flows per node . . . . . . . . . . . . . . . . . . . . . . . . . 70

12.6 Transmission and reception bandwidth per server . . . . . . . . . . . . . 70

12.7 Bandwidth mean and standard deviation . . . . . . . . . . . . . . . . . . 72

12.8 Throughput per pair of flows . . . . . . . . . . . . . . . . . . . . . . . . 72

ix





List of Tables

4.1 Estimated time for each task . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Hardware budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Software budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Human resources budget . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.5 Indirect costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.6 Total budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.7 Budget for each task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 Sustainability matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

11.1 Convergence time when the link goes down . . . . . . . . . . . . . . . . 64

11.2 Convergence time when the link goes up . . . . . . . . . . . . . . . . . . 64

11.3 Convergence time when the link goes down (no red paths) . . . . . . . . 65

11.4 Convergence time when the link goes up (no red paths) . . . . . . . . . . 65

11.5 Convergence mean time comparison when the link goes down . . . . . . 65

11.6 Convergence mean time comparison when the link goes up . . . . . . . . 65

xi





Acronyms

ARP Address Resolution Protocol

ASN Autonomous System Number

BFD Bidirectional Forwarding Detection

BGP Border Gateway Protocol

CERN European Organization for Nuclear Research

DC Data Center

ECMP Equal Cost Multi Path

EGP Exterior Gateway Protocol

EVPN Ethernet Virtual Private Network

IGP Interior Gateway Protocol

LACP Link Aggregation Control Protocol

LAG Link Aggregation Group

LHC Large Hadron Collider

MAC Media Access Control

MPLS MultiProtocol Label Switching

MRAI Minimum Route Advertisement Interval

OSPF Open Shortest Path First

P2P Point to Point

RFC Request For Comments

RFD Route Flap Damping

SS Super Spine

STP Spanning Tree Protocol

TCP Transport Control Protocol

UDP User Datagram Protocol

VGA Virtual Gateway Address

VLAN Virtual Local Area Network

VM Virtual Machine

xiii



VNI VXLAN Network Identifier

VPLS Virtual Private LAN Service

VTEP Virtual Tunnel End Point

VXLAN Virtual eXtensible Local Area Network

xiv



Part I

The project

1





1 Introduction

1.1 CERN

The European Organization for Nuclear Research (CERN) is the largest particle physics

laboratory in the world. Its goal is to study the basic constituents of matter – the fundamental

particles. The particles are made to collide together at close to the speed of light using the

world’s largest and most complex scientific instruments. The process gives the physicists

clues about how the particles interact, and provides insights into the fundamental laws of

nature.

Founded in 1954, the laboratory is located near the Franco-Swiss border in Geneva. It was

one of Europe’s first joint ventures and now has 22 member states. There are over 2250

staff members employed by CERN but there can be up to 13 000 people on site at any one

time. This includes users, students, fellows, sub-contractors and visiting scientists from

around the world.

The instruments used at CERN are purpose-built particle accelerators and detectors. Ac-

celerators boost beams of particles to high energies before the beams are made to collide

with each other or with stationary targets. Detectors observe and record the results of these

collisions. The Large Hadron Collider (LHC) is the world’s largest and most powerful

particle accelerator and it first started up on September 2008.

The LHC consists of a 27-kilometer ring of superconducting magnets located 100 meters

underground. The particles are made to collide approximately 1 billion times per second

at close to the speed of light, generating about one petabyte of data per second. However,

such quantities of data are impossible for current computing systems to record and they are

hence filtered by the experiments, keeping only the most interesting ones. The filtered data

are then aggregated in the CERN Data Center (DC), where initial data reconstruction is

performed, and where a copy is archived to long-term tape storage.

Even after the drastic data reduction performed by the experiments, the DC processes on

average one petabyte of data per day [1]. Therefore, the DC requires a high-bandwidth

network with a carefully design architecture.

1.2 The data center

The DC is the heart of CERN’s entire scientific, administrative and computing infrastruc-

ture. All services, including email, scientific data management and videoconferencing use

equipment based in the DC. It houses over 11 500 servers (174 000 processor cores and

61 900 disks) and 230PB of permanent storage in tapes [2][3]. A high-performance Ethernet

3



network comprising of over 400 switches is deployed to interconnect all these machines.

The total power requirement is 3.5MW.

Today’s DC network is based on the classic 3-Tier design model which consists of the core,

aggregation and access layers. Between the core and aggregation layers the traffic is routed

using Open Shortest Path First (OSPF), while between the access and aggregation layers it

is switched in Layer 2. All access switches are connected to the same aggregation router

with one or multiple uplinks.

...

Access x400

Aggregation x7

Core x3

Layer 2

...

Layer 3

Figure 1.1: Schema of the current architecture

The fact that each switch is connected to a single router has not been a problem thanks to

the high reliability of the current hardware. It only becomes a problem when there is a need

to do maintenance to an aggregation router (e.g. a firmware upgrade), which results in a 5

minute disconnection of all 50 access switches connected to it, and therefore hundreds of

servers.

In addition, introducing a new manufacturer with less reliable hardware could have a big

impact in the DC, making network redundancy an important factor to improve.

1.3 Context

I joined CERN in February 2017 as a technical student in the Information Technology

(IT) department. As a member of the Communication Engineering section (CE) of the

Communication Systems group (CS), I’ve been working on improving the DC network.

The topic of this thesis, Evaluation of an IP Fabric network architecture for CERN’s data

center, has been my main project. I’ve done most of the research and development and have

received support and contributions from the engineers in the section.

The IT department provides the computer services required for the fulfillment of CERN’s

mission in an efficient and effective manner. This includes data processing, storage, net-

works and support for the whole laboratory and its users. It also provides a ground for

advanced research and development of new IT technologies with partners from other research

institutions and industry [4].

4



The Communication Systems group is responsible for all telecommunication services.

These include the campus network for office and WiFi connectivity, a technical network to

support accelerator operations, a high-performance data center network to support physics

computing, external high-bandwidth connections to computing facilities around the world,

fixed and mobile telephony services, and radio services for the emergency teams.

The Communication Engineering section consists of 12 network and computer engineers

responsible for provisioning network equipment, operating services such as WiFi, DNS and

DHCP, and designing and configuring the network architectures.

5





2 Background

2.1 Layer 2 architectures

The most common classic architecture is the 3-tier switched design which consists of 3

layers (or stages): access, aggregation (or distribution) and core. Each higher layer, from

the server towards the WAN, has higher port density and bandwidth capacity where the core

functions as the ”trunk” of the tree-based design.

Traditionally, Spanning Tree Protocol (STP) is used to achieve a redundant loop-free topol-

ogy. However, it doesn’t scale well in large broadcast domains and the redundancy it

provides is passive, which means the backup links are only used when the main fails. Al-

though the protocol has been enhanced over the years, the convergence and stability is still

not enough.

Recently, new Layer 2 protocols that provide active redundancy have appeared with the

goal of replacing STP. These are TRILL and related proprietary protocols. However, they

have limited number of implementations and equipment that supports it, so its applicability

is limited and the cost of such designs is expensive. [5].

An alternative to the L2 design is a hybrid L2/L3, like CERN currently has. This means

that traffic between the aggregation and the core layers is routed in L3 with OSPF. This

was done in order to have active redundancy, therefore increasing the core bandwidth and

avoiding wasting expensive high-bandwidth transceivers and ports.

The simplest complete solution to the redundancy problem is to extend Layer 3 down to the

access layer, thus converting all switches to routers. This was not possible until recently,

when ToR switches that support routing have become more common and cheaper.

2.2 State-of-the-art

IP Fabric is the current state-of-the-art network architecture for medium and large-scale

data centers, as proven by the implementation of tech giants (e.g. Microsoft [6], Facebook

[7]) and the solutions offered by most of the largest communications hardware companies

(e.g. Cisco [8], Juniper [9], Brocade [10]). However, they rarely explain the inner workings

or discuss design decisions, and sometimes offer a vendor-agnostic solution that doesn’t

fit our needs. The network engineering group in the organization considers that a proper

evaluation is needed in order to understand better the technology and optimize it for our

needs and use cases. The best existing resources for the state-of-the-art are:

• RFC7938 - Use of BGP for Routing in Large-Scale Data Centers [5]: it’s quite detailed

but the physical architecture presented is different to what CERN’s currently has.

Makes many assertions without providing proof or comparing solutions.

7



• Brocade Network Virtualization in IP Fabric with BGP EVPN [11]: not very detailed

but provides an example configuration for their devices, albeit incomplete.

The IP Fabric architecture, also known as Leaf-Spine, typically consists in a 3-stage Clos

network [12] where all ports are Layer 3. The access switches (Leaves) act as routers and

are connected to all aggregation routers (Spines). The Leaves then load balance the traffic

among all available links using Equal Cost Multi Path (ECMP) routing. Compared to the

current situation, a failing Spine would have no impact but reduced capacity.

...

Leaf x400

Spine x7

...

Layer 3

Figure 2.1: 3-stage IP Fabric schema

Connecting 400 Leaves to all Spines is not viable since Spine routers would need a huge

density and the cost of thousands of links would be very high. As a result, the proposed

architecture will be a 5-stage Clos network, introducing the Super Spine (SS) routers.

...

Leaf x400

Spine x7

Super Spine x3

...

Layer 3

Figure 2.2: 5-stage IP Fabric schema

The network looks similar to the current. It will be necessary to add at least an uplink to

each Leaf towards a different Spine for redundancy and to enable the routing protocol.

In addition, there could be a separation of storage and computing servers by creating clusters

(or pods). A cluster is a set of Leaves connected to the same Spines. Having a cluster

for Virtual Machines (VM) would allow to deploy new technologies like Ethernet Virtual

Private Network (EVPN) for VM mobility without impacting the whole data center.

To sum up, the main benefits of an IP Fabric are:

• Increased redundancy, minimizing the impact of hardware failure and maintenance

stops.

• Traffic isolation between computing domains and services.

• Ability to deploy EVPN and provide VM mobility

8



Drawbacks:

• Economical: The cost of the switches as they will need to support routing, and more

ports and cables will be used.

2.3 Technologies

This project will require the knowledge of different networking protocols, the main described

below:

• Border Gateway Protocol (BGP): an Exterior Gateway protocol (EGP) that is used to

exchange routing information among routers in different Autonomous Systems (AS).

It’s a path vector routing protocol and has longer convergence time than link-state

protocols but excellent scalability. The routing information includes the complete

route to each destination. The protocol uses the network reachability information

to construct a graph of AS connectivity, which enables to remove routing loops and

enforce policy decisions at the AS level [13]. Although BGP is known as the de facto

interdomain routing protocol in the Internet, it has been recently introduced in the

data center.

• Open Shortest Path First (OSPF): an Interior Gateway Protocol (IGP) commonly

used in large enterprise networks. OSPF is a link-state routing protocol providing

fast convergence and good scalability. Each router maintains a database describing

the Autonomous System’s topology [14].

• Equal Cost Multi Path routing (ECMP): it is a balancing method of routing when

the routing table contains multiple next-hop addresses for the same destination with

equal cost. If there is an ECMP set for the active route, a hash algorithm is used to

choose one of the next-hop addresses in the set to install in the forwarding table [15].

• Link Aggregation Control Protocol (LACP): enables aggregating multiple links be-

tween Ethernet physical interfaces to create a single logical link called Link Aggrega-

tion Group (LAG). The LAG balances traffic across the member links and effectively

increases the bandwidth. Another advantage of link aggregation is increased avail-

ability, because the LAG is composed of multiple member links. If one member fails,

the LAG continues to carry traffic over the remaining links [16].

• Bidirectional Forwarding Detection (BFD): provides fast link failure detection for

many media types and routing protocols [17].

9





3 Objective

The objective of this project is to evaluate a next-generation network architecture, the IP

Fabric, for CERN’s DC. This architecture would allow to increase network redundancy

and provide traffic isolation and virtual machine mobility. These features are needed by

data center administrators and users. The evaluation will comprise an in-depth analysis of

different variations and their impact.

3.1 Scope

The IP Fabric will be designed based on current and future needs. Different designs will

be contrasted qualitatively (networking protocols, complexity of operation, reliability...)

and quantitatively (hardware resources needed, path redundancy, convergence time...). The

design selected as most fitting will be tested in a lab with physical routers and tester devices.

To automatize the tests, Python scripts will be written to generate the configuration of the

routers. Based on theoretical and practical results, the necessary resources to implement the

architecture in the data center will be estimated.

In summary, this project will require the understanding of advanced networking concepts, the

knowledge of the operation of a data center and programming skills to achieve automation.

3.2 Possible obstacles

The lab tests will be carried out with 7 routers. It’s possible that the results won’t apply

exactly to the real DC, which would have hundreds of routers. This is difficult to predict

and won’t be known until the architecture is deployed. The deployment should be done

gradually to ensure impact is minimal in case of failure.

Related to this, another possible obstacle is that the router models used for the testing might

be different than those in the DC when the architecture is deployed. This is because newer

routers may be acquired next year. If that happened, the tests should be redone to ensure the

deployment and design is correct.

In addition, some of the routers to be used for the tests are loaned by a vendor for CERN

to test. Therefore, the tests will have to be done in a short timespan so the units can be

returned by the deadline.

11



3.3 Stakeholders

The target audience of the project are network engineers that need an evaluation in depth of

this new architecture. This document will be helpful to many institutions and companies

interested in implementing these technologies. In particular, the engineers in the CE section

at CERN need this research to decide if the implementation is feasible considering the

available resources.

CERN has over 10 000 users and workers that use the data center daily for their research

and work. They would all benefit from this upgrade thanks to the increase of network

redundancy and the reduced impact of network failures.

12



4 Plan

4.1 Methodology

The first phase of the project will be reading all relevant and available documentation needed

to learn and understand the networking concepts required. In the second phase, different

designs and variations will be compared and discussed with other network engineers to

decide which is best. The third phase will consist in checking that the chosen design is

theoretically sound, and corrections will be made if necessary. Lastly, once the model is

very clear, it will be implemented in the lab and tested in conditions as similar as possible

to the real DC. If big problems or limitations are found, a different design will be tested.

All the work, including the documentation written and obtained, the router configurations

and outputs, and the Python scripts will be saved on a local and remote Git repository. The

material such as networking devices, cables, optical fibers and transceivers is provided by

CERN.

The development will be followed closely by the engineering team, which will participate

in the discussions, and the tutor, who will be informed regularly of the progress and will

help to achieve the objectives.

4.2 Tasks and schedule

The estimated duration of the project is approximately 4 months. It starts the 12 September

2017 and finishes before the 22 January 2018, when it will be presented. There will be a

break of 2 weeks between the 22 December and the 7 January for holidays. It must be noted

that the schedule and tasks could be modified in the future if any problems or inconveniences

were found.

The plan of the project can be divided in the following tasks, whose time to complete has

been estimated:

Understanding current architecture design and limitations

The current architecture of CERN’s data center needs to be understood, as well as its

needs and limitations. Despite having previous knowledge of how a data center works, it’s

necessary to learn how it operates in practice and which are the peculiarities of this one. In

addition, the software tools and procedures used by the engineers will have to be studied.

From the start, a PC with Ubuntu 16 and Windows 10 will be used.

13



Project planning

Project planning is important since it is being developed in a company. The resources

needed will be monitored and not used exclusively for this project, so a clear schedule and

planning of the workloads needs to be estimated.

Learning advanced networking concepts

To understand network architectures for large-scale data centers, advanced concepts that

are not taught in university are needed. This will be helpful also for the next task, since

understanding technical documents is vital for the project. The knowledge will be acquired

through public available documents, such as company manuals and technical standard

specifications, and through the mentoring of peers. The networking concepts in question

are:

• Routing protocols in depth: Open Shortest Path First (OSPF), Border Gateway Proto-

col (BGP)

• Internet Protocol version 6 (IPv6)

• Control protocols: Link Aggregation Control Protocol (LACP), Bidirectional For-

warding Detection (BFD)

• Overlay protocols: Virtual eXtensible Local Area Network (VXLAN), Ethernet

Virtual Private Network (EVPN)

Reading available documentation and papers about IP Fabric

Due to the novelty of this technology, the available literature is not extensive. However,

searching and understanding it will take a long time.

Evaluate IP Fabric designs

Different designs will be contrasted qualitatively (networking protocols, complexity of

operation, reliability...) and quantitatively (hardware resources needed, path redundancy,

convergence time...). Discussions with other network engineers will take place in order to

decide which is best.

14



Study and adapt the selected design

This task will consist in checking that the chosen design is theoretically sound, and correc-

tions will be made if necessary. It will be adapted to our current needs and limitations, based

on what is learned in the previous research. Things that will have to be considered are:

• Are our current routers and switches compatible with the protocols and functions this

design requires?

• If not, can the design still be implemented while ignoring the missing features?

• If yes, do they have the necessary hardware resources to implement the design in

such scale?

• If the hardware resources are limited, which changes need to be made?

• Which hardware not currently owned by the company could make the design feasible?

Test the selected design in the lab

Once the model is very clear, it will be implemented in the lab and tested in conditions as

similar as possible to the real DC. If big problems or limitations arise, it will be necessary

to go back to the previous task.

In order to do this, the available hardware will be installed and configured. The necessary

tools will be learned too. To automate the testing, Python scripts will be written to generate

the configuration of the routers. Based on theoretical and practical results, the necessary

resources to implement the architecture in the DC will be calculated.

Specifically, the resources needed for this task are: 7 routers, a tester device and a python

IDE. Apart from a Network Engineer, a Software Engineer role will act.

Write documentation

After all the tests are finished and consistent and validated results are obtained, a formal

document will be written. It must be noted that documenting the process will be necessary

for all tasks.

To write the documentation, LATEX and Microsoft Visio will be used.

15



Task Estimated time (hours)

Understanding current architecture 50

Project planning 25

Learning advanced networking concepts 35

Reading documentation about IP Fabric 50

Evaluate IP Fabric designs 100

Study and adapt the selected design 120

Test the selected design in the lab 110

Write documentation 50

Total 540

Table 4.1: Estimated time for each task

Figure 4.1: Gantt chart

4.3 Resources

Hardware

Note that the network devices below are called switches by the vendors, but could also be

called routers as they have routing capabilities. In this document both terms will be used

interchangeably.

• PC (Intel i7, 8GB RAM, 256GB SSD)

• 2 Brocade SLX 9540-48S switches [18]: a Top-of-Rack (ToR) 1U switch

• 4 Brocade ICX7750-48F switches [19]: a ToR 1U switch

• 1 Brocade MLXe-16 switch [20]: an aggregation or core modular chassis switch

• 1 Spirent HyperMetrics SPT-11U tester [21]: a network tester that can generate traffic

and emulate routers

16



Figure 4.2: Brocade SLX 9540-48S

Figure 4.3: Brocade ICX7750-48F

Figure 4.4: Brocade MLXe-16

Software

This project will use Free and Open Source Software (FOSS) except when a proprietary

solution is needed, like in the case of Windows 10 and Microsoft Visio, one of the best

diagramming tools, which will be used to draw the networks.

• Ubuntu 16

• Windows 10

• LATEX document preparation system

• Spyder 3 Python IDE

17



• Spirent TestCenter test software

• Microsoft Visio diagramming software

4.4 Action plan

The plan is to complete the tasks sequentially as specified. The writing of the documentation

could be made at the same time as most tasks. As seen in the Gantt chart, all tasks except

the writing of documentation should be completed before Christmas holidays.

Again, the goal of the project is to evaluate if the IP Fabric architecture is viable for CERN’s

data center. It is expected to find a solution that meets the requirements, but it is not

guaranteed. If such solution is not found, the lab testing task would be used to compare

different designs.

An unlikely but possible obstacle could be the unavailability of lab resources. This is

improbable since they have been reserved, but if such case happened, the number and length

of tests should be reduced.

If a switch had a problem and stopped working, the tests would be adapted to the situation.

Fortunately, a single switch less wouldn’t be very disruptive.

Apart from these 3 unlikely obstacles, the execution of the tasks is straightforward. The

project will be developed during 19 weeks, or 17 if holidays are discounted. This means

each week will require 32 hours of work at most, which is viable.

4.5 Project budget

In this section the budget is presented, taking into account the total price of the products

and resources needed, and the depreciation when relevant. The total duration of the project

is 118 days (from 12 September to 22 January, minus 14 days for holidays). This number

will be used to calculate depreciation.

Hardware budget

An important part of the budget will be dedicated to hardware because high-end data center

switches, necessary for the tests in the lab, are very expensive.

18



Product Price per unit (€) Units Price (€) Useful life (years) Depreciation (€)

PC 800 1 800 5 51.73

Brocade SLX 35 000 2 70 000 5 4 526.03

Brocade ICX 15 000 4 60 000 5 3 879.45

Brocade MLX 45 000 1 45 000 5 2 909.59

Spirent 20 000 1 20 000 5 1 293.15

Total 195 800 12 659.95

Table 4.2: Hardware budget

Sources for the prices: [22], [23], [24], [25]

Software budget

Most programs used are FOSS. A license for Windows 10 and Microsoft Visio will have to

be acquired.

Product Price per unit (€) Units Price (€)

Ubuntu 16 0 1 0

Windows 10 200 1 200

LATEX document preparation system 0 1 0

Spyder 3 Python IDE 0 1 0

Spirent TestCenter test software 0 1 0

Microsoft Visio diagramming software 590 1 590

Total 790

Table 4.3: Software budget

Human resources budget

This project requires a Network engineer [26] and a Software engineer [27]:

Role Hourly wage (€) Work hours Salary (€)

Network engineer 40 500 20 000

Software developer 45 40 1 800

Total 21 800

Table 4.4: Human resources budget

19



Indirect costs

The necessary hardware requires a significant amount of power. The electricity cost in

Switzerland is approximately 0.25€/kWh [28]. Source for the power consumption values:

[29],[30],[31].

Product Power (W) Units Total power (W) Hours Energy (kWh) Cost (€)

PC 100 1 100 540 54 13.50

Brocade SLX 166 2 332 110 36.5 9.10

Brocade ICX 250 4 1000 110 110 27.50

Brocade MLX 320 1 320 110 35.2 8.80

Spirent 690 1 690 110 75.9 19.00

Total 2442 311.6 77.90

Table 4.5: Indirect costs

Unexpected costs

There aren’t any unexpected costs that can be foreseen. Nonetheless, a contingency reserve

equal to the 3% of the total budget will be added.

Total budget

Concept Cost (€)

Hardware budget 12 659.95

Software budget 790.00

Human resources budget 21 800.00

Indirect costs 77.90

Subtotal 35 327.85

Contingency reserve (3%) 1 059.84

Total 36 387.69

Table 4.6: Total budget

The budget for each task is shown below. Each budget includes the relevant number of

Network engineer hours paid, plus the cost of the resources specified in the last column.

Indirect costs and the contingency reserve are omitted.

20



Task Budget (€) Justification

Understanding current architecture 2 251.73 PC, Windows 10

Project planning 1 000.00

Learning advanced networking concepts 1 400.00

Reading documentation about IP Fabric 2 000.00

Evaluate IP Fabric designs 4 000.00

Study and adapt the selected design 4 800.00

Test the selected design in the lab 17 208.22 Switches, Software engineer wage

Write documentation 2 590.00 Microsoft Visio

Table 4.7: Budget for each task

Budget monitoring

The specified budget is expected to be stable and big deviations are not foreseen. The budget

that will require the most monitoring will be that of Human Resources because the time

estimations of each task could be slightly wrong and the project consists of two different

engineer roles.

In principle, it’s not expected to work more than the allocated hours. Because many of

the tasks will consist in comparing different solutions, if time runs short, a few will be

abandoned and the attention will be centered around the best. In the exceptional case that

more paid hours were needed, the costs would be deducted from the contingency reserve.

Problems with the software and hardware won’t cause a deviation in the budget. Commercial

software includes support, so the company could be contacted if necessary. If a switch had

a problem and stopped working, the tests would be adapted to the situation, which wouldn’t

be very disruptive. Two major hardware failures would be disruptive but it’s extremely

improbable, so it’s not taken into account.

In order to control the budget, at the end of each task it will be updated. If the working

hours have exceeded the number allocated, the corresponding amount will be deducted from

another task. Otherwise, the surplus will be reallocated.

21





5 Sustainability and social
commitment

5.1 Environmental dimension

This project has a moderate environmental impact due to the power consumption of the

switches during the tests, which is unavoidable. On the other hand, this amount is negligible

when taking into account that the DC has over 400 switches operating 24h a day. The useful

life of the implemented architecture won’t have an extra environmental impact. In principle,

the hardware used will be the same which is used today or similar, and as a consequence

the power consumption won’t increase. In summary, this part is rated with a 7 out of 10,

because the total energy consumption during the project will be 311.6kWh; a 20 out of 20

useful life and a 0 risk.

5.2 Economic dimension

The economic impact is significant due to the high costs of the switches. However, they

have a 5 year useful life, so the depreciation is small. After the project, they will be used

for everyday operations in the data center. The costs of the resources couldn’t be lowered

because the tests should be carried out with the hardware already used in the data center, in

order to obtain reliable results. This part will be rated with a 6/10 and, because the hardware

resources will be reused, a 20/20 and a 0 risk.

5.3 Social dimension

The social impact can be considered high. First, making this project will allow the author to

learn how a large-scale data center works in detail, which is a very unique skill.

Second, the documentation of this project will be useful for the engineering team to decide

if the studied architecture should be implemented. If done, during its lifetime the IP

Fabric architecture could reduce server downtime by making the network more robust.

Therefore, users of services in the data center will be more productive. The impact is even

more important when considering that CERN is an international particle physics research

institution, whose work serves society. For these reasons, the social dimension is rated with

a 10/10 and a 20/20. The only risk is that implementing the architecture can be operationally

difficult, and some services may need to be stopped during the upgrade. The risk is rated a

-5.

23



5.4 Sustainability matrix

PPP Useful life Risks

Environmental 7 20 0

Economic 6 20 0

Social 10 20 -5

Subtotal 23 60 -5

Total 78

Table 5.1: Sustainability matrix

24



Part II

The evaluation

25





6 IP Fabric features and options

We start the evaluation by presenting the most important features of the IP Fabric and

discussing different options. For an introduction to the architecture, see section 2.2. This

chapter concerns the underlay of the fabric – the physical infrastructure; for a discussion of

the overlay see chapter 9.

6.1 Routing protocol

For mid-scale data centers, OSPF and Intermediate System to Intermediate System (IS-IS)

can be used. For large-scale data centers like CERN’s, BGP should be used due to its

scalability and the traffic engineering capabilities it provides. Although BGP is known as

the de facto interdomain routing protocol in the Internet, it has been recently introduced in

the data center.

Both internal BGP (iBGP) and external BGP (eBGP) can be used, exclusively or combined.

The use of one or the other impacts the complexity of the required configuration and the

routes available in the Fabric.

6.2 Route control

To maximize redundancy, all routes that have a physical path should be available, however,

this has a cost and may not be viable. In theory, convergence time increases with the number

of routers that need to update their BGP table due to a failure [5, p. 24]. Moreover, the

number of existing paths is very large due to the mesh between Leaves and Spines, and

the mesh between Spines and SS. Thus, convergence time and BGP table sizes should be

estimated.

Many paths in the Fabric are suboptimal and might not be necessary or ever used, so they

shouldn’t be advertised. BGP peers advertise only the best route to a destination according

to the selection algorithm [32]. Below we write in order the preferences of the algorithm,

which might be slightly different depending on the implementation:

1. Highest LOCAL_PREF (Local Preference)

2. Shortest AS_PATH

3. Lowest origin value

4. Lowest MED (Multi-Exit Discriminator)

5. Prefer eBGP over iBGP

27



6. Lowest IGP cost to the next-hop

7. Lowest router ID

8. Lowest peer address

There are 3 types of suboptimal paths that are abundant and worth analyzing, as shown in

figure 6.1:

• From a Spine to a Leaf using another Leaf (the Red paths): suppose Leaf H selects

route D-I to reach a host connected to Leaf I as best. Then, it will advertise route

H-D-I to Spine E, which will add it to the BGP table.

• From a SS to a Spine using another Spine (the Orange paths): suppose Spine D selects

route A-F-J to reach a host connected to Leaf J as best. Then, it will advertise route

D-A-F-J to SS B, which will add it to the BGP table.

• From a Leaf to a Leaf of the same cluster using a SS (the Yellow paths): suppose

SS C selects route G-K to reach a host connected to Leaf K as best. Then, it will

advertise route C-G-K to Spine F, which will add it to the BGP table.

E

H J

D F

A B C

...

I

G

K...

Figure 6.1: Suboptimal paths

In section 7 we will analyze quantitatively the consequences of having these three types of

routes.

At the moment, we can state that Orange paths are necessary in the current physical archi-

tecture because Super Spines summarize data center networks to Core routers (these are the

core of the global CERN network). Core routers don’t have knowledge of the available DC

routes and they send traffic to A, B and C. In case of two link failures (for example B-F

and B-G), traffic from outside the DC could be lost if orange paths weren’t allowed (for

example traffic in B towards a host connected to J).

If all paths are available, it might be preferred that traffic only goes up and down one time.

For example, yellow and red paths have the same cost in number of hops. To prefer yellow

paths, SS should send routes to Spines with a lower MED than Leaves do.

In any case, it may be a good idea to set all route advertisements from all routers with a MED

150 (around the middle of the range), so in the future individual routes can be preferred or

penalized.

28



Default routes

Default routes should be sent by SS so Leaves know the best path to external routes. If they

are configured as static in each Leaf, traffic will be lost in some cases. For example, if a

Spine loses all uplinks, Leaves will still send traffic to it.

6.3 iBGP

iBGP requires a full mesh of sessions and as this does not scale, Route Reflectors (RR) [33]

should be used. The problem with route reflection is that it only reflects the best route. To

enable ECMP, we need the AddPath BGP capability [34], which adds additional paths into

the advertisements between RR and clients. Unfortunately, it is not widely supported yet.

To use iBGP exclusively, all Spines should be RR of their connected Leaves and SS should

be RR of all Spines. This configuration filters Red and Orange paths. In addition, because

RRs don’t change the next-hop when they reflect routes, next-hop-self should be used in

order to avoid relying in an IGP to solve the next-hop recursively.

Alternatively, iBGP and eBGP can be mixed. In this scenario, Spines should be RR of their

connected Leaves, all in the same AS. Spines and SS would have eBGP sessions. This

configuration filters Red and Yellow paths.

6.4 eBGP

Using eBGP exclusively is the most flexible and straightforward solution, but a distribution

of Autonomous System Numbers (ASN) must be chosen. All paths can be allowed or

filtered with ASNs or route-maps (router policies).

Because CERN runs a dual-stack network, IPv4 and IPv6 routes can be advertised in the

same or different sessions. Having an IPv4 session to send IPv4 routes and an IPv6 session

to send IPv6 routes is the simplest option. Sending IPv6 routes to an IPv4 peer requires

setting an IPv6 next-hop to them with a route-map. The downside of having two sessions is

that it implies more monitoring work. There might be some cases in which alarms will be

duplicated.

In conclusion, the best option is a full eBGP IP Fabric with a separate session for each

IP version, because it requires less configuration and features than the iBGP alternative.

From now on, we will assume we are working with eBGP. In section 8 we discuss the ASN

distribution options.

29



6.5 Clusters

A cluster (or pod) is defined as a set of Leaves connected to the same Spines. They can

be used to separate groups of servers that need specific uplink bandwidth or protocols.

By separating computing and storage servers in different clusters, some features could be

implemented only where needed, like EVPN or 40GbE uplinks.

...

...

Figure 6.2: IP Fabric with clusters of 2 Spines

Not using clusters makes the physical architecture more flexible, since Leaves can be

connected to any Spine, but makes the number of paths available and the routes used more

unpredictable if there’s not a good and consistent organization. For this reason, using

clusters may be a better solution even if they aren’t homogeneous.

...

...

Figure 6.3: IP Fabric without clusters

6.6 Load balancing

One of the main features of the IP Fabric is that all uplinks can be active if using load-

balancing. Leaves can load-balance to their Spines, Spines to all Super Spines, and these

to every group of Spines. To achieve this, Equal Cost Multi Path (ECMP) is used, which

allows to load-balance between multiple paths of the same cost by adding multiple entries

towards the same destination in the routing table.

30



For example, let’s take a look at the fragment of a routing table shown below. The entry

220 is duplicated, because to reach 10.93.10.25 there are two gateways: 10.90.128.21 and

10.90.128.29. This is in the routing table of an ECMP-enabled Leaf connected to two

Spines.

220 10.93.10.25/32 10.90.128.21 ve 287 20/0 Be 1d1h
10.93.10.25/32 10.90.128.29 ve 289 20/0 Be 1d1h

221 10.93.10.26/32 10.90.128.21 ve 287 20/0 Be 1d1h
10.93.10.26/32 10.90.128.29 ve 289 20/0 Be 1d1h

222 10.93.10.27/32 10.90.128.21 ve 287 20/0 Be 1d1h
10.93.10.27/32 10.90.128.29 ve 289 20/0 Be 1d1h

Figure 6.4: ECMP

6.7 Point-to-Point networks

For Point-to-Point (P2P) links in IPv4, netmasks /31 can be used to save addresses [35].

Public addresses are needed to allow Path MTU Discovery [36], which might be required

by external sites in order to avoid packet fragmentation.

In many cases, more than one uplink from a Leaf to a Spine will be needed to fulfill

bandwidth requirements. This can be done by setting a P2P subnet for each uplink or by

setting a LAG. The former multiplies the number of IPs and learned routes and requires

configuring extra BGP sessions. The latter will require the router to do load-balancing

in Layer 2 (between members of a LAG) and Layer 3 (between LAGs going to different

Spines).

Assuming 400 Leaves, there will at least 800 P2P prefixes in IPv4 and also in IPv6. Op-

tions:

• Do not advertise them.

• Advertise them in BGP.

– Summarize them on every device. Requires a good address allocation scheme.

– Don’t summarize them.

31



• Advertise them in OSPF. The advantage is that if something goes wrong with BGP,

there will still be access to the routers. The disadvantage is that we have to configure

another protocol. We have the option to advertise IPv4 in OSPFv2 and IPv6 in

OSPFv3 or both in OSPFv3, if the router supports it [37].

6.8 Maintenance

When putting a Spine or SS on maintenance, it might be wanted to avoid transit through it.

There are two easy ways of doing it without taking down BGP sessions:

• Withdraw all routes to peers. Can be done by applying a route-map that denies all

outbound routes. It’s simple and easy to automate.

route-map ON_MAINTENANCE deny 10

address-family ipv4 unicast
neighbor leaf-group route-map out ON_MAINTENANCE
neighbor ss-group route-map out ON_MAINTENANCE
address-family ipv6 unicast
neighbor leaf-group-v6 route-map out ON_MAINTENANCE
neighbor ss-group-v6 route-map out ON_MAINTENANCE

• Use AS-prepending, so peers never select its paths as best. Must be adapted to each

ASN and neighbors will still see the routes in their BGP tables.

route-map PREPEND permit 10
match ip address ANY_IP
set as-path prepend 65002 65002 65002 65002

6.9 Convergence

BGP is by default a protocol with slow convergence, due to the predefined timers in most

implementations (e.g. Keepalive=60s, Hold-down=180s). To minimize the convergence

time, link failure should be detected immediately in order to start the update process – we

cannot depend on timers. At the same time, a system to avoid the effects of route flapping

is needed.

Link failure

The fast-fallover router feature should be used to take down the BGP session immediately

when the link to a peer goes down.

For rare situations in which there’s a link failure but it is not detected (the link appears

up), Bidirectional Forwarding Detection (BFD) [38] or Link Aggregation Control Protocol

32



(LACP) could also be used. BFD provides faster detection (e.g. latency of 50ms), which

might be useful for applications like VoIP. If the fabric already has LAGs, LACP could

be used everywhere (including single links) for consistency. BFD for LAGs [39] is quite

recent and not widely supported.

Apart from link failure, there can be other situations in which a BGP session goes down,

like misconfiguration. For this reason, timers are still relevant but should be decreased

accordingly.

Route flapping

BGP has two mechanisms to control the frequency of route advertisement: MinRouteAd-

vertisementInterval (MRAI) and Route Flap Damping (RFD) [40]. MRAI deals with very

short bursts on the order of a few to 30 seconds. RFD deals with longer bursts, minutes to

hours.

MRAI is an internal timer that determines the minimum amount of time that must elapse

between advertisements or withdrawals of routes towards a particular destination to a peer.

It cannot be modified in most routers.

RFD is a technique for BGP that penalizes unstable routes by restricting their advertisement.

According to RFC 7196 [41], RFDmay penalize well-behaved prefixes’ normal convergence

process in sites with a topological richness, because it amplifies the number of update

messages exchanged. Therefore, RFD should be tuned accordingly.

Notice that RFD must be enabled in both IP address families.

6.10 Summary

We conclude that external BGP is the most adequate protocol to use for CERN’s DC. We

have identified necessary and suboptimal paths, the benefits of organizing the routers in

clusters and the usefulness of ECMP (one of the most important IP Fabric features). We have

discussed the options for managing Point-to-Point links, putting a router on maintenance

and minimizing convergence time.

33





7 BGP table scalability

Regarding BGP scalability, there are two factors that must be understood: the number of

routes installed and the number of sessions per router. This depends on the configuration

of the fabric and should be calculated in order to ensure the routers have the necessary

resources.

Because we are assuming eBGP, the number of sessions per router equals the number of

routers connected to it. It is easy to verify if the device can handle it by reading its technical

sheet.

In this chapter we find the expressions to calculate the number of paths installed in the BGP

table in the best and worst cases for Leaves, Spines and Super Spines. The mathematical

expressions shown in this section assume that the Fabric is working in normal conditions,

that there’s only one logical link between two routers and that P2P and loopback networks

are not advertised in BGP (the only advertisements come from Leaves, which advertise

networks for servers). It is guaranteed that the table size will never be larger than in the

worst cases, but might be smaller than in the best cases if some links or routers fail.

7.1 Leaves

A Leave has a path to each network originally advertised by itself and a path to each other

network received from its connected Spines. The BGP table size for any Leaf TL can be

expressed as:

TL = N0 + (N − N0) · S (7.1)

N0 = number of networks advertised by the Leaf

N = total number of networks in the fabric

S = number of connected Spines

7.2 Spines

In the best case for a Spine, all SS and Leaves select as best all paths that have the Spine as

next-hop. In this case, the Spine receives:

• A route to each network advertised by connected leaves (from them).

• A route to each other network (from each SS).

35



The BGP table size in the best case for a Spine can be expressed as:

NL + (N − NL) · SS

NL = total number of networks advertised by connected Leaves

SS = number of Super Spines

In the worst case, SS and Leaves don’t select as best any path that has the Spine as next-hop.

Then, the Spine receives advertisements classified in 4 groups:

• A route to each network advertised by connected leaves (from them).

• A route to each other network (from each SS).

• A route to each network advertised by connected leaves (from each SS). These are

Yellow paths in figure 6.1.

• A route to each other network (from each connected leaf). These are Red paths in

figure 6.1.

The BGP table size in the worst case for a Spine can be expressed as the formula below,

where the terms represent the groups in order:

NL + (N − NL) · SS + NL · SS +
L∑

i=1
(N − NLi) (7.2)

L = number of connected Leaves

NLi = number of networks advertised by connected Leaf i

Simplified:

N · (L + SS)

In summary, the BGP table size for Spines TS is:

NL + (N − NL) · SS ≤ TS ≤ N · (L + SS) (7.3)

It can be seen that the difference between the best and worst case are the Yellow and Red

paths (specially the latter).

7.3 Super Spines

In the best case for a Super Spine, all Spines select as best all paths that have the Super

Spine as next-hop. In this case, the Super Spine receives:

• A route to each network originated in every cluster (from each Spine of the cluster).

36



The BGP table size in the best case for a Super Spine can be expressed as:

C∑
i=1

Si · Ni

Ni = total number of networks advertised by Leaves in cluster i

Si = number of Spines in cluster i

C = number of clusters

In the worst case, Spines don’t select as best any path that has the Super Spine as next-hop.

Then, the Super Spine receives:

• A route to each network originated in every cluster (from each Spine of the cluster).

• A route to each network originated in every cluster (from each Spine of the other

clusters). These are ”Orange” paths in figure 6.1.

The BGP table size in the worst case for a Super Spine can be expressed as:

C∑
i=1

Si · Ni +
C∑

i=1
Si · (N − Ni) (7.4)

Simplified:

N · S

In summary, the BGP table size for Super Spines TSS is:

C∑
i=1

Si · Ni ≤ TSS ≤ N · S (7.5)

It can be seen that the difference between the best and worst case are the Orange paths.

7.4 Example scenario

The following scenario will be used to calculate the BGP table sizes and the impact of Red,

Orange and Yellow paths in a data center similar to CERN’s.

• 3 Super Spines (SS = 3)

• 8 Spines

• 400 Leaves

• 4 clusters of 2 spines and 100 Leaves each (C = 4, S = 2, L = 100)

• Each Leaf advertises 8 prefixes (NLi = 8)

• In total, the fabric has 3 200 advertised prefixes (N = 3200)

37



According to expression 7.1, each Leaf will have

TL = 8 + (3200 − 8) · 2 = 6392

In case the hardware doesn’t support this large number of routes in IPv6, the solution would

be to use only default routes in the IPv6 session. This would cause suboptimal routing in

cases of multiple link failures in the fabric. However, because nowadays most traffic is

IPv4, this could be considered an acceptable risk.

According to expression 7.3, each Spine will have:

800 + (3200 − 800) · 3 ≤ TS ≤ 3200 · (100 + 3)

8000 ≤ TS ≤ 329 600

As seen in expression 7.2, Yellow paths represent NL · SS = 2400 and Red paths represent∑L
i=1(N − NLi) = 319 200.

This means that the Spine routers should support 329 600 routes in IPv4 and IPv6, most

of which are suboptimal. Therefore, allowing Red paths may not be viable and should be

filtered.

According to expression 7.5, each Super Spine will have:

4 · 2 · 800 ≤ TSS ≤ 3200 · 8

6400 ≤ TSS ≤ 25 600

As seen in expression 7.4, Orange paths represent
∑C

i=1 Si · (N − Ni) = 19 200, so their
impact is significantly lower than Red.

319200best 2400

best 19200 19200

... best

...

Figure 7.1: Impact of suboptimal routes

7.5 Summary

We have analyzed quantitatively the best-case and worst-case BGP table sizes for each router

in the fabric. We have written general mathematical expressions that allow to calculate

38



these sizes depending on the number of advertised routes, the number of routers in each

layer of the fabric and cluster, and how they are connected. These numbers allow to verify

if the configuration is viable, and if not justify the filtering of certain groups of routes. In

an scenario approximate to CERN’s DC, we have found that the number of Red paths is too

large and they shouldn’t be installed in the BGP tables.

39





8 ASN distribution policy

When using eBGP, there are many different ASN distributions we can choose. In this chapter

we analyze the features of each.

In BGP, there are two ranges of private ASNs [42]. The 16-bit range is small and goes

from 64 512 to 65 534 inclusive, for a total of 1 023 numbers. The 32-bit range goes from

4 200 000 000 to 4 294 967 294 inclusive, for a total of 94 967 295 numbers available. One

possible downside of 32-bit numbers is that not all routers have complete support. For

example, they might not be able to remove these numbers from the AS-path, which will

be necessary to do in the border routers so that they can export specific routes outside of

CERN.

Because 32-bit numbers are very long, there are two formats to represent them [43]. The

asplain format (e.g. 4 259 840 100), is the decimal representation. The asdot+ format (e.g.

65000.100) separates the first and last 16 bits of the number with a dot. This representation

is more human friendly, however, if there are existing scripts or configurations that use

regular expressions with ASNs, they would need to be adapted to this format.

In addition, assignment policies can be deployed based on rack, room or data center, which

might be easier to do with the biggest range.

Thus, there are 3 options:

• Use 16-bit numbers exclusively and use an strategy to assign them efficiently.

• Use 32-bit numbers exclusively.

• Start using 16-bit numbers, and if they run out start using 32-bit numbers.

8.1 ASNs in Leaves

There are 3 possible distributions.

Unique ASN for each Leaf

Routes can be traced by looking at the AS-path, making troubleshooting easy, but requires

keeping a database containing all routers and their assigned number.

41



64800

65001 65002 65003 65004 65005 65006

64901 64902 64903 64904

Figure 8.1: eBGP fabric with a unique ASN for each Leaf

Repeated ASNs in each cluster

This solution allows to save ASNs if using 16-bit numbers exclusively, but adds a little

more complexity in the database. For this system to work, Leaves must be configured with

allowas-in, which allows them to accept paths containing their own ASN.

64800

65001 65002 65003 65001 65002 65003

64901 64902

Figure 8.2: eBGP fabric with repeated ASNs in each cluster

Same ASN for all Leaves

To avoid having to manage hundreds of numbers, the same ASN number can be used in all

Leaves. This makes automation easier but AS-PATH loses information. Leaves must be

configured with allowas-in 2 (2 to allow red paths). Example:

neighbor 10.90.128.5 allowas-in 2
neighbor 10.90.128.13 allowas-in 2

The allowas-in command must be configured for each connected Spine and in both address-

families.

42



64800

65000

64901 64902

Figure 8.3: eBGP fabric with the same ASN in each Leaf

8.2 ASNs in Spines

At the spine level, the numbers can be distributed in two ways.

Same ASN in Spines of the same cluster

This configuration implies that Red and Yellow routes (see Figure 6.1) are not learned by

Spines due to the AS-path check (paths that already contain the ASN are discarded).

Unique ASN for each Spine

This allows to make clusters flexible. For example, a Leaf could be connected to two Spines

of different clusters and it still would work. However, to avoid the Red and Yellow paths,

route-maps and communities should be used.

To filter Red paths, the following route-map can be applied in Spines towards their Leaves:

route-map TO_LEAVES permit 10
set community no-advertise

8.3 ASNs in Super Spines

At the Super Spine level, the numbers can be distributed in two ways.

Same ASN in all Super Spines

This configuration implies that Orange routes are not learned by Super Spines due to the

AS-path check.

43



Unique ASN for each Super Spine

In this case, Orange routes can be filtered using route-maps and communities.

The following route-map can be applied in Super Spines towards Spines:

route-map TO_SPINES permit 10
set community 65000:555

And in Spines towards Super Spines:

route-map TO_SUPERSPINES deny 10
match community 65000:555
route-map TO_SUPERSPINES permit 20

The community number can be any.

8.4 Summary

Many different ASN distribution policies have been discussed for each layer of the fabric.

Some policies require more configuration, extra complexity or explicit filters of unnecessary

paths. A combination of policies should be chosen depending on the capabilities of the

routers and the preferences of the network engineers.

44



9 Overlay

After analyzing the underlay of the IP Fabric, we now take a look to the overlay: network

virtualization and EVPN.

9.1 Network virtualization

Today’s data centers have an increasing demand for computing, storage and network re-

sources from applications. In order to scale, resources are being abstracted from their logical

representation, in what is referred to as virtualization.

With server virtualization, each physical server supports multiple Virtual Machines (VMs),

each running its own operating system and applications. With network virtualization, the

same physical network allows multiple virtual network instances, also called overlays, that

isolate traffic from the others. Multi-tenant data centers (e.g. different departments) need to

separate resources for security and privacy.

A key feature of virtualization is VM mobility, that is, to migrate from one server to another

live while continuing to run. To achieve this, address space separation between tenants must

be supported. Also, it must be possible to migrate VMs anywhere in the data center without

restricting VM addressing to match the subnet boundaries of the underlying network. For

live migration, a VM must retain its IP and MAC address to prevent existing connections

(e.g. TCP) from breaking and needing to be restarted [44].

9.2 EVPN

EVPN is a protocol that extends Layer 2 domains over an IP Fabric and supports VMmobility.

Unlike other protocols used for similar purposes (e.g. VPLS), it provides separation between

the data and control planes. In the control plane, it uses BGP; in the data plane it can

use different encapsulation mechanisms, mainly Virtual eXtensible Local Area Network

(VXLAN) and Multi-Protocol Label Switching (MPLS).

Data plane

In this document we’ll test VXLAN encapsulation, since it is simpler and more common

than MPLS in the data center. The VXLAN protocol allows to segment networks similarly

to what VLAN does, but it can have up to 16 million administrative domains as opposed to

4000. The key feature of VXLAN is that it provides a mean to extend a Layer 2 network

45



over Layer 3 network. The endpoints for the tunnels are called Virtual Tunnel EndPoints

(VTEP).

The downside of using VXLAN is that it adds and overhead of 50 bytes to each original

frame, as shown in figure 9.1.

Outer MAC
header

14B

Outer IP
header

20B

UDP
header

8B

VXLAN
header

8B

Original L2 frame FCS

Figure 9.1: VXLAN frame encapsulation

Control plane

EVPN adds a new address family in Multi Protocol BGP. This new address family allows

MAC addresses to be treated as routes in the BGP table. The entry can contain just a MAC

address or a pair IP address/MAC address (ARP entry). Because the learning happens at

the control plane, it can be restricted by applying policies.

Broadcast and multicast traffic can be sent using ingress replication. This is a technique

used to avoid flooding frames. Because VTEPs know each other (thanks to BGP), whenever

they must flood a frame in a VXLAN segment, they replicates the frame in hardware and

send a unicast frame to each of the VTEPs in that segment.

Another feature is ARP/ND suppression. Because Leaves have remote ARP entries from

BGP, they can respond to any local ARP queries. This eliminates the need for flooding ARP

requests in the network infrastructure.

Unlike in the underlay, iBGP is the best option for an EVPN overlay. This is because iBGP

advertisements don’t change the next-hop and this is the desired behavior. VTEPs don’t

have knowledge of the underlay, they just know each other – the other endpoint of the tunnel,

which should be the next-hop.

Finally, a choice to be made is the placement of L3 gateways, that is, the gateways to route

from one VXLAN to another. Ideally, they will be located in the Leaves, because they also

contain the VTEPs and this would allow optimal routing. However, not all ToR switches

support it, so they can be placed at the Spine level.

9.3 Summary

In this chapter we introduce the need for network virtualization and its advantages. We

discuss EVPN, the state-of-the-art protocol to create overlays in the data center. Unlike in

the underlay, iBGP is the best option for an EVPN overlay.

46



10 Proposed solution

After reviewing the main features and options of the IP Fabric with the engineers in the CE

section, we have made the following decisions:

• Routing protocol: eBGP. For simplicity, IPv4 sessions will be used to advertise IPv4

routes and IPv6 sessions for IPv6 routes.

• Route control: Red paths will be filtered. Yellow and Orange paths will be allowed.

• Clusters: yes, heterogeneous (mixing computing and storage servers).

• P2P networks: advertised in OSPFv3.

• Maintenance: a route-map will be used to withdraw all advertisements from the router.

• Convergence: LACP, Fast Fallover and Route Damping will be used.

• ASN distribution: start with 16-bit ASNs. Individual ASN for SS and Spines, same

ASN in all Leaves.

• Overlay: EVPN with iBGP and VXLAN.

This design has been selected as the best and preferred for CERN’s data center. In principle,

the current equipment has all features needed to implement this architecture except for

EVPN support. Here and in the following chapters, we test it in the lab.

10.1 Setup

The tests have been carried out with 2 Brocade SLX 9540-48S, 4 Brocade ICX7750-48F, 1

Brocade MLXe-16, and 1 Spirent HyperMetrics SPT-11U tester device.

To do a few basic tests the topology showed in figure 10.3 has been built and configured.

The goal of these initial tests is to get acquainted with the configuration and to check that

the analyses made in previous chapters are correct.

In each router there is an IPv4 and an IPv6 BGP session for each neighbor. To simulate that

each Leaf has 8 servers connected, each advertises 8 loopback addresses that are routed to

null. Each Spine sends the routes to the Leaves with the community no-advertise, in order

to prevent Red paths.

47



Figure 10.1: Brocade switches during test

Figure 10.2: Spirent during test

48



10 Gbps  

Management  
21

3 4 Spirent

Spines

Leafs

.1

.2

.5

.6.10

.9

.201

.202

.205

.206

.13

.14

.209 .210.213
.214

AS65001

AS65005

10.90.128

.10 .11

.12 .13

.1 .2

.3 .4

192.168.61

10.90.61

SS1 SS2

AS65002

AS65003 AS65004

10.16.134

.8 .9
.17

.18

.21

.22
.26

.25 .29

.30

SS

Figure 10.3: Basic BGP tests setup

10.2 Configuration

Here we show the configuration for each device. It includes BGP sessions dual-stack, ECMP,

the networks advertised and route-maps to prevent Red paths.

SS configuration

router bgp
local-as 65111
capability as4 enable
fast-external-fallover
neighbor fd01:1458:306:7::12 remote-as 65001
neighbor fd01:1458:306:8::16 remote-as 65002
neighbor 10.90.128.18 remote-as 65001
neighbor 10.90.128.22 remote-as 65002

address-family ipv4 unicast
maximum-paths 2
multipath multi-as

address-family ipv6 unicast
maximum-paths 2
multipath multi-as
neighbor fd01:1458:306:8::16 activate
neighbor fd01:1458:306:7::12 activate

49



Spine configuration

router bgp
local-as 65001
capability as4 enable
fast-external-fallover
neighbor leaf-group peer-group
neighbor leaf-group-v6 peer-group
neighbor 10.90.128.2 remote-as 65003
neighbor 10.90.128.2 peer-group leaf-group
neighbor 10.90.128.6 remote-as 65004
neighbor 10.90.128.6 peer-group leaf-group
neighbor 10.90.128.17 remote-as 65111
neighbor 10.90.128.25 remote-as 65222
neighbor 10.90.128.202 remote-as 65005
neighbor 10.90.128.202 peer-group leaf-group
neighbor fd01:1458:306:1::2 remote-as 65003
neighbor fd01:1458:306:1::2 peer-group leaf-group-v6
neighbor fd01:1458:306:3::6 remote-as 65004
neighbor fd01:1458:306:3::6 peer-group leaf-group-v6
neighbor fd01:1458:306:7::11 remote-as 65111
neighbor fd01:1458:306:9::19 remote-as 65222
neighbor fd01:1458:306:c8::ca remote-as 65005
neighbor fd01:1458:306:c8::ca peer-group leaf-group-v6

address-family ipv4 unicast
maximum-paths 2
multipath multi-as
neighbor leaf-group route-map out TO_LEAVES
neighbor leaf-group send-community

address-family ipv6 unicast
maximum-paths 2
multipath multi-as
neighbor leaf-group-v6 activate
neighbor leaf-group-v6 route-map out TO_LEAVES_V6
neighbor leaf-group-v6 send-community
neighbor fd01:1458:306:1::2 activate
neighbor fd01:1458:306:3::6 activate
neighbor fd01:1458:306:7::11 activate
neighbor fd01:1458:306:9::19 activate
neighbor fd01:1458:306:c8::ca activate

Leaf configuration

router bgp
local-as 65004
capability as4 enable
fast-external-fallover
neighbor 10.90.128.5 remote-as 65001

50



neighbor 10.90.128.13 remote-as 65002
neighbor fd01:1458:306:3::5 remote-as 65001
neighbor fd01:1458:306:5::d remote-as 65002

address-family ipv4 unicast
maximum-paths 2
multipath multi-as
network 10.90.14.12/32
network 10.90.14.13/32
network 10.90.14.14/32
network 10.90.14.15/32
network 10.90.14.16/32
network 10.90.14.17/32
network 10.90.14.18/32
network 10.90.14.11/32

address-family ipv6 unicast
maximum-paths 2
multipath multi-as
network fd01:1458:306:aa11::/64
network fd01:1458:306:aa12::/64
network fd01:1458:306:aa13::/64
network fd01:1458:306:aa14::/64
network fd01:1458:306:aa15::/64
network fd01:1458:306:aa16::/64
network fd01:1458:306:aa17::/64
network fd01:1458:306:aa18::/64
neighbor fd01:1458:306:3::5 activate
neighbor fd01:1458:306:5::d activate

10.3 BGP table

In the Spine BGP table, we can see 16 routes, 8 for each Leaf, as expected.

#show ip bgp
Total number of BGP Routes: 16
Status codes: s suppressed, d damped, h history, * valid, [...]
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop MED LocPrf Weight Path
*> 10.90.13.11/32 10.90.128.2 0 100 0 65003 i
*> 10.90.13.12/32 10.90.128.2 0 100 0 65003 i
*> 10.90.13.13/32 10.90.128.2 0 100 0 65003 i
*> 10.90.13.14/32 10.90.128.2 0 100 0 65003 i
*> 10.90.13.15/32 10.90.128.2 0 100 0 65003 i
*> 10.90.13.16/32 10.90.128.2 0 100 0 65003 i
*> 10.90.13.17/32 10.90.128.2 0 100 0 65003 i
*> 10.90.13.18/32 10.90.128.2 0 100 0 65003 i
*> 10.90.14.11/32 10.90.128.6 0 100 0 65004 i
*> 10.90.14.12/32 10.90.128.6 0 100 0 65004 i

51



*> 10.90.14.13/32 10.90.128.6 0 100 0 65004 i
*> 10.90.14.14/32 10.90.128.6 0 100 0 65004 i
*> 10.90.14.15/32 10.90.128.6 0 100 0 65004 i
*> 10.90.14.16/32 10.90.128.6 0 100 0 65004 i
*> 10.90.14.17/32 10.90.128.6 0 100 0 65004 i
*> 10.90.14.18/32 10.90.128.6 0 100 0 65004 i

When all routers have converged, the size of their BGP tables is consistent with the ex-

pressions calculated in section 7. Below are shown the number of installed routes in each

router.

Leaf

#show ip bgp | include Total
Total number of BGP Routes: 24
#show ipv6 bgp | include Total
Total number of BGP Routes: 24

Spine best

#show ip bgp | include Total
Total number of BGP Routes: 16
#show ipv6 bgp | include Total
Total number of BGP Routes: 16

Spine worst

#show ip bgp | include Total
Total number of BGP Routes: 48
#show ipv6 bgp | include Total
Total number of BGP Routes: 48

Super Spine

Since there are not other clusters, both have the same number of routes.

#show ip bgp | include Total
Total number of BGP Routes: 32
#show ipv6 bgp | include Total
Total number of BGP Routes: 32

52



10.4 Summary

In this chapter we have presented our architecture proposal for CERN’s DC. We have

constructed a basic IP Fabric in order to get acquainted with the Brocade configuration and

verify that the research we have made in previous chapters is correct.

53





11 Advanced BGP tests

11.1 Setup

To test the behavior of the fabric in a more realistic scenario, it is necessary to have a

large number of routers and advertisements. To simulate this, another router has been

connected to the Spines which contains multiple Virtual Routing and Forwarding (VRF)

instances. Basically, each one represents a virtual router. The script written to generate the

configuration can be found in appendix A.

In this test there are 2 clusters, each one has 10 leaves and each leaf advertises 24 networks

dual stack.

The debug mode has been enabled in all routers in order to inspect BGP behavior in detail

and to be able to calculate convergence times. The commands to enable the mode are:

debug destination telnet 1
debug ip bgp
debug ip bgp general
debug ip bgp events
debug ip bgp updates
debug ip bgp route-selection

Figure 11.1 shows the physical setup. The green switch is the Brocade MLX, the red

switches are Brocade SLX, the blue switches are Brocade ICX and the purple box is the

Spirent.

Figure 11.2 shows the logical setup. The two SLX (R10 and R20) act as SS, two ICX (R1

and R2) act as Spines in a cluster, the other two ICX (R3 and R4) act as Leaves in this

cluster. The MLX provides 2 VRFs that act as 2 Spines in another cluster, and 8 other VRFs

that act as Leaves connected to R1 and R2. Spirent emulates 20 servers connected to R3

and 1 server connected to R4. The 2 VRFs Spines in the second cluster are configured as if

they had 10 Leaves connected and there where 20 servers behind.

Figure 11.3 shows the fabric we are simulating, where each level is (in order): Super Spine,

Spine, Leaf, server.

55



R2R1

R3 R4

Spirent

R10 R20

MLX

Figure 11.1: Physical setup

R2R1

R3 R4

R10 R20

x8 x10

x20x20

Figure 11.2: Logical setup

56



Figure 11.3: Simulation schema

11.2 Route advertisement

Once the fabric has converged, we can check the BGP statistics for each router. Remember

that we have 2 SS and 2 clusters with 2 Spines and 10 Leaf each. Each Leaf advertises 24

networks. In this test no paths have been filtered.

Leaves

First we check Leaves R3 and R4. Let’s rewrite equation 7.1 to find the number of routes

that should be installed in their BGP tables:

TL = N0 + (N − N0) · S

In this case N0 = 24, N = 480, S = 2. Therefore:

TL = 24 + (480 − 24) · 2 = 936

As we can see below, the result is consistent with what the routers state.

R3

#show ip bgp | include Total
Total number of BGP Routes: 936

#show ipv6 bgp | include Total
Total number of BGP Routes: 936

#show ip bgp summary
Number of Routes Installed: 936, Uses 80496 bytes
Number of Routes Advertising to All Neighbors: 504 (480 entries), [...]
Number of Attribute Entries Installed: 21, Uses 1890 bytes
Neighbor Address AS# State Time Rt:Accepted Sent
10.90.128.1 65001 ESTAB 2d19h37m 456 24
10.90.128.9 65002 ESTAB 2d19h37m 456 480

57



R4

#show ip bgp | include Total
Total number of BGP Routes: 936

#show ipv6 bgp | include Total
Total number of BGP Routes: 936

#show ip bgp summary
Number of Neighbors Configured: 2, UP: 2
Number of Routes Installed: 936, Uses 80496 bytes
Number of Routes Advertising to All Neighbors: 504 (480 entries), [...]
Number of Attribute Entries Installed: 21, Uses 1890 bytes
Neighbor Address AS# State Time Rt:Accepted Sent
10.90.128.5 65001 ESTAB 2d19h39m 456 24
10.90.128.13 65002 ESTAB 2d19h39m 456 480

Spines

Now we check Spines R1 and R2. Let’s rewrite expression 7.3 to find the number of routes

that should be installed in their BGP tables:

NL + (N − NL) · SS ≤ TS ≤ N · (L + SS)

In this case NL = 240, N = 480, SS = 2, L = 10. Therefore:

240 + (480 − 240) · 2 ≤ TS ≤ 480 · (10 + 2)

720 ≤ TS ≤ 5760

As we can see below, the result is consistent with what the routers state. R1 has been favored

by all leaves.

R1

#show ip bgp | include Total
Total number of BGP Routes: 720

#show ipv6 bgp | include Total
Total number of BGP Routes: 720

#show ip bgp summary
Number of Neighbors Configured: 12, UP: 12
Number of Routes Installed: 720, Uses 61920 bytes
Number of Routes Advertising to All Neighbors: 6240 (960 entries), [...]
Number of Attribute Entries Installed: 23, Uses 2070 bytes
Neighbor Address AS# State Time Rt:Accepted Sent
10.90.128.2 65003 ESTAB 2d19h46m 24 456

58



10.90.128.6 65004 ESTAB 2d19h47m 24 456
10.90.128.17 65111 ESTAB 2d19h52m 240 240
10.90.128.25 65222 ESTAB 2d19h52m 240 480
10.94.0.2 65010 ESTAB 2d19h52m 24 456
10.94.1.2 65011 ESTAB 2d19h52m 24 456
10.94.2.2 65012 ESTAB 2d19h52m 24 456
10.94.3.2 65013 ESTAB 2d19h52m 24 456
10.94.4.2 65014 ESTAB 2d19h52m 24 456
10.94.5.2 65015 ESTAB 2d19h52m 24 456
10.94.6.2 65016 ESTAB 2d19h52m 24 456
10.94.7.2 65017 ESTAB 2d19h52m 24 456

R2

#show ip bgp | include Total
Total number of BGP Routes: 5760
#show ipv6 bgp | include Total
Total number of BGP Routes: 5760

#show ip bgp summary
Number of Neighbors Configured: 12, UP: 12
Number of Routes Installed: 5760, Uses 495360 bytes
Number of Routes Advertising to All Neighbors: 6240 (960 entries), [...]
Number of Attribute Entries Installed: 143, Uses 12870 bytes
Neighbor Address AS# State Time Rt:Accepted Sent
10.90.128.10 65003 ESTAB 2d19h50m 480 456
10.90.128.14 65004 ESTAB 2d19h51m 480 456
10.90.128.21 65111 ESTAB 2d19h56m 480 240
10.90.128.29 65222 ESTAB 2d19h56m 480 480
10.95.0.2 65010 ESTAB 2d19h56m 480 456
10.95.1.2 65011 ESTAB 2d19h56m 480 456
10.95.2.2 65012 ESTAB 2d19h56m 480 456
10.95.3.2 65013 ESTAB 2d19h56m 480 456
10.95.4.2 65014 ESTAB 2d19h56m 480 456
10.95.5.2 65015 ESTAB 2d19h56m 480 456
10.95.6.2 65016 ESTAB 2d19h56m 480 456
10.95.7.2 65017 ESTAB 2d19h56m 480 456

Super Spines

Now we check SS R10 and R20. Let’s rewrite expression 7.5 to find the number of routes

that should be installed in their BGP tables:

C∑
i=1

Si · Ni ≤ TSS ≤ N · S

In this case C = 2, Si = 2, Ni = 240, N = 480, S = 4. Therefore:

2 · 240 + 2 · 240 ≤ TSS ≤ 480 · 4

59



960 ≤ TSS ≤ 1920

As we can see below, the result is consistent with what the routers state.

There’s an event that appears in the outputs and is worth mentioning: in R10 and R20 it

can be seen that they don’t have the same number of routes installed in the IPv4 and IPv6

sessions. This is likely to happen if both sessions aren’t configured at the same time or in

different order.

R10

#show ip bgp | include Total
Total number of BGP Routes: 960
#show ipv6 bgp | include Total
Total number of BGP Routes: 1440

Number of Neighbors Configured: 4, UP: 4
Number of Routes Installed: 960, Uses 120000 bytes
Number of Routes Advertising to All Neighbors: 1440 (960 entries), [...]
Number of Attribute Entries Installed: 33, Uses 3795 bytes
'+': Data in InQueue '>': Data in OutQueue '-': Clearing
'*': Update Policy 'c': Group change 'p': Group change Pending
'r': Restarting 's': Stale '^': Up before Restart '<': EOR waiting
Neighbor Address AS# State Time Rt:Accepted Sent
10.90.128.18 65001 ESTAB 2d20h 4m 240 240
10.90.128.22 65002 ESTAB 2d20h 5m 240 480
10.94.100.2 65301 ESTAB 2d20h 2m 240 240
10.94.101.2 65302 ESTAB 2d20h 2m 240 480

Number of Neighbors Configured: 4, UP: 4
Number of Routes Installed: 1440, Uses 180000 bytes
Number of Routes Advertising to All Neighbors: 1440 (480 entries), [...]
Number of Attribute Entries Installed: 24, Uses 2760 bytes
'+': Data in InQueue '>': Data in OutQueue '-': Clearing
'*': Update Policy 'c': Group change 'p': Group change Pending
'r': Restarting 's': Stale '^': Up before Restart '<': EOR waiting
Neighbor Address AS# State Time Rt:Accepted Sent
fd01:1458:306:7::12
65001 ESTAB 2d20h 7m 480 240
fd01:1458:306:8::16
65002 ESTAB 2d20h 8m 480 480
fd01:1458:306:94a0::2
65301 ESTAB 2d20h 5m 240 240
fd01:1458:306:94a1::2
65302 ESTAB 2d20h 5m 240 480

R20

60



#show ip bgp | include Total
Total number of BGP Routes: 1920
#show ipv6 bgp | include Total
Total number of BGP Routes: 1440

Number of Neighbors Configured: 4, UP: 4
Number of Routes Installed: 1920, Uses 240000 bytes
Number of Routes Advertising to All Neighbors: 1440 (960 entries), [...]
Number of Attribute Entries Installed: 55, Uses 6325 bytes
Neighbor Address AS# State Time Rt:Accepted Sent
10.90.128.26 65001 ESTAB 2d20h 5m 480 240
10.90.128.30 65002 ESTAB 2d20h 6m 480 480
10.95.100.2 65301 ESTAB 2d20h 3m 480 240
10.95.101.2 65302 ESTAB 2d20h 3m 480 480

Number of Neighbors Configured: 4, UP: 4
Number of Routes Installed: 1440, Uses 180000 bytes
Number of Routes Advertising to All Neighbors: 1440 (480 entries), [...]
Number of Attribute Entries Installed: 42, Uses 4830 bytes
Neighbor Address AS# State Time Rt:Accepted Sent
fd01:1458:306:9::1a
65001 ESTAB 2d20h 9m 240 240
fd01:1458:306:a::1e
65002 ESTAB 2d20h10m 240 480
fd01:1458:306:95a0::2
65301 ESTAB 2d20h 7m 480 240
fd01:1458:306:95a1::2
65302 ESTAB 2d20h 7m 480 480

After analyzing all the outputs, we can confirm the fabric works as expected and the number

of routes advertised and learned are correct. During these tests we have found that the

Brocade ICX switches do not support more than 20 BGP peers in a stable manner. We have

found this number by adjusting the number of peers and networks advertised until it was

stable. This means that the current hardware is not ideal to implement the IP Fabric.

11.3 Traffic load-balancing

After testing the basic elements of the Fabric, we test it with traffic generated by Spirent to

observe the behavior. One important feature is ECMP, so we test it next.

Traffic to same cluster

In this test there are 20 0.5Gbps flows with different source IP and to the same IP destination.

It simulates 20 servers connected to R3 sending traffic to network 10.90.14.11/32 advertised

by R4, which will drop the packets (routed to null). All links are 10Gbps.

61



To check ECMP works correctly, the output rates of the relevant interfaces are shown. The

traffic originates from a server connected to R3, so this one should split the traffic:

R3

R3 interfaces: 1/1/31 to R1, 1/1/32 to R2

#show interfaces ethernet 1/1/31 | include output rate
300 second output rate: [...], 538950 packets/sec, 45.04% utilization

#show interfaces ethernet 1/1/32 | include output rate
300 second output rate: [...], 658717 packets/sec, 55.05% utilization

R1 and R2 should receive half the traffic from R3.

R1

#show interfaces ethernet 1/1/14 | include output rate
300 second output rate: [...], 542151 packets/sec, 45.27% utilization

R2

#show interfaces ethernet 1/1/24 | include output rate
300 second output rate: [...], 657719 packets/sec, 54.97% utilization

From the outputs it can be seen that the load-balancing is correct, although the load is not

perfectly split. One thing to note is that R4 is frozen, seems like dropping 10Gbps is very

CPU intensive.

Traffic to other cluster

In this test there are 20 flows with different source IP and different IP destination. It

simulates 20 servers connected to R3 sending traffic to 20 servers in the second cluster.

For some unexplained reason, in ICX routers the option load-balancing symmetric must be

enabled for correct load-balancing in the spines.

Again, R3 should split the traffic to both Spines.

R3

#show interfaces ethernet 1/1/31 | include output rate
300 second output rate: [...], 478701 packets/sec, 39.99% utilization

#show interfaces ethernet 1/1/32 | include output rate
300 second output rate: [...], 717992 packets/sec, 59.98% utilization

62



R1 and R2 should split their received traffic another time.

R1

#show interfaces ethernet 1/1/11 | include output rate
300 second output rate: [...], 239224 packets/sec, 19.98% utilization

#show interfaces ethernet 1/1/12 | include output rate
300 second output rate: [...], 239224 packets/sec, 19.98% utilization

R2

#show interfaces ethernet 1/1/21 | include output rate
300 second output rate: [...], 298353 packets/sec, 24.92% utilization

#show interfaces ethernet 1/1/22 | include output rate
300 second output rate: [...], 419481 packets/sec, 35.03% utilization

Because the spines of the other cluster are virtual, it’s not possible to see the load balancing

from SS to virtual Spines.

Again, we can see that the load-balancing is not perfect but good.

11.4 Convergence time

The goal is to see how the convergence time changes when all paths are available and when

Red paths are filtered.

For the purposes of this test, the convergence time is defined as the time between the instant

a BGP session goes down or up, and the instant the BGP table has all routes expected and has

selected the best routes in IPv4 and IPv6. One thing to note is that most of the convergence

time is due to the BGP session getting established and not due to the learning process.

To get the timestamps, the debug mode for BGP has been enabled in all routers. Example

of debug output:

Debug: May 31 11:54:44 BGP: Interface 14337 went Down
Debug: May 31 11:54:44 BGP: 10.90.128.1 stop peer, subcode 8
Debug: May 31 11:54:44 BGP: 10.90.128.1 sending NOTIFICATION Cease
Debug: May 31 11:54:44 BGP: 10.90.128.1 reset, BGP notification Cease sent
Debug: May 31 11:54:44 BGP: 10.90.128.1 Closing TCP connection 0x2d5359b8
Debug: May 31 11:54:44 BGP: 10.90.128.1 BGP connection closed
Debug: May 31 11:54:44 BGP: 10.90.128.1 Peer went to IDLE [...]
Debug: May 31 11:54:44 BGP: 10.90.128.1 Peer already in IDLE state
Debug: May 31 11:54:44 BGP: Interface 14337 went Down
Debug: May 31 11:54:44 BGP: fd01:1458:306:1::1 stop peer, subcode 8
Debug: May 31 11:54:44 BGP: fd01:1458:306:1::1 sending NOTIFICATION Cease
Debug: May 31 11:54:44 BGP: fd01:1458:306:1::1 reset, [...]
Debug: May 31 11:54:44 BGP: fd01:1458:306:1::1 Closing TCP connection [...]
Debug: May 31 11:54:44 BGP: fd01:1458:306:1::1 BGP connection closed

63



Debug: May 31 11:54:44 BGP: fd01:1458:306:1::1 Peer went to IDLE [...]
Debug: May 31 11:54:44 BGP: fd01:1458:306:1::1 Peer already in IDLE state
Debug: May 31 11:54:44 BGP: select best route 10.93.3.3/32 load_share
Debug: May 31 11:54:44 BGP: eligible route 1
Debug: May 31 11:54:44 BGP: 10.90.128.9 Best path 10.93.3.3/32, no change
Debug: May 31 11:54:44 BGP: multipath 10.93.3.3/32 changed
Debug: May 31 11:54:44 BGP: update all paths in ipv4 fwd for 10.93.3.3/32
Debug: May 31 11:54:44 BGP: select best route 10.93.3.2/32 load_share
Debug: May 31 11:54:44 BGP: eligible route 1
Debug: May 31 11:54:44 BGP: 10.90.128.9 Best path 10.93.3.2/32, no change
Debug: May 31 11:54:44 BGP: multipath 10.93.3.2/32 changed
Debug: May 31 11:54:44 BGP: update all paths in ipv4 fwd for 10.93.3.2/32
Debug: May 31 11:54:44 BGP: select best route 10.93.3.1/32 load_share
Debug: May 31 11:54:44 BGP: eligible route 1
Debug: May 31 11:54:44 BGP: 10.90.128.9 Best path 10.93.3.1/32, no change
Debug: May 31 11:54:44 BGP: multipath 10.93.3.1/32 changed
Debug: May 31 11:54:44 BGP: update all paths in ipv4 fwd for 10.93.3.1/32
Debug: May 31 11:54:44 BGP: select best route 10.93.2.255/32 load_share
Debug: May 31 11:54:44 BGP: eligible route 1
Debug: May 31 11:54:44 BGP: 10.90.128.9 Best path 10.93.2.255/32, no change
Debug: May 31 11:54:44 BGP: multipath 10.93.2.255/32 changed
Debug: May 31 11:54:44 BGP: update all paths in ipv4 fwd for 10.93.2.255/32
Debug: May 31 11:54:44 BGP: select best route 10.93.2.254/32 load_share
Debug: May 31 11:54:44 BGP: eligible route 1
Debug: May 31 11:54:44 BGP: 10.90.128.9 Best path 10.93.2.254/32, no change
Debug: May 31 11:54:44 BGP: multipath 10.93.2.254/32 changed

The time is calculated in two scenarios: when the link from R3 to R1 goes down and up.

Each test has been repeated 3 times. The times are shown in seconds.

All paths available

Test 1 Test 2 Test 3 Mean

R3 2 2 1 1.66

R1 1 2 2 1.66

R2 1 1 1 1

Table 11.1: Convergence time when the link goes down

Test 1 Test 2 Test 3 Mean

R3 17 15 17 16.33

R1 12 9 18 13

R2 7 11 12 10

Table 11.2: Convergence time when the link goes up

64



Red paths not available

Test 1 Test 2 Test 3 Mean

R3 2 2 1 1.66

R1 1 1 2 1.33

R2 2 2 2 2

Table 11.3: Convergence time when the link goes down (no red paths)

Test 1 Test 2 Test 3 Mean

R3 18 12 24 18

R1 10 25 12 15.66

R2 18 12 14 14.66

Table 11.4: Convergence time when the link goes up (no red paths)

Mean time comparison

All paths No Red paths

R3 1.66 1.66

R1 1.66 1.33

R2 1 2

Table 11.5: Convergence mean time comparison when the link goes down

All paths No Red paths

R3 16.33 18

R1 13 15.66

R2 10 14.66

Table 11.6: Convergence mean time comparison when the link goes up

11.5 Summary

We have tested route advertisement, load-balancing and convergence time in a complex IP

Fabric.

In the first test we checked again that the number of installed routes is as expected. In

addition, we found that the current switches used in the DC have limited resources in terms

65



of supported BGP peers and number of installed routes. To implement the IP Fabric at the

scale of CERN’s DC, we will need to buy new switches that support more BGP peers.

In the second test we found that load-balancing is correct.

In the third test we found that convergence isn’t slower when allowing Red paths in this

scenario (when in the worst case, a router has 5760 routes instead of 1200). Moreover,

convergence time seems to be random and unpredictable when tested multiple times in

the same conditions. Therefore, filtering Red paths should be done in order to save router

memory, but from this test we cannot guarantee that convergence will be faster.

66



12 EVPN tests

In this chapter we test how EVPNworks in a basic IP Fabric. Because Brocade ICX switches

don’t support EVPN, we’ll use Juniper QFX switches. Note that in practice, QFX switches

support only 4000 VXLANs and 2000 remote VTEPs. The devices are:

• Spine: Juniper QFX10016 (firmware Junos 17.3R1-S1.5)

• Leaves: Juniper QFX5110-48s-4c (firmware Junos 17.3R1.10)

• Hosts: Spirent emulated servers, physical servers

Figure 12.1: Juniper QFX switches during test (most cables are unrelated)

There are two different tests with different setups. In both tests the topology consists of an

underlay eBGP IP Fabric and an overlay iBGP EVPN VXLAN. In the overlay, the VTEPs

are in the Leaves and the L3 gateway is in the Spine, which also acts as route reflector. In

addition, all links are 40GbE.

The goal of the tests is to see how the switches handle multiple overlay flows. There are 3

types of flows with different behaviors (each one has been tested individually to check the

description is correct):

• Intra-VXLAN: traffic between two hosts in the same VXLAN over an IP network.

If the hosts are connected to different Leaves, the traffic goes through the VXLAN

tunnel and the VTEPs in the Leaves encapsulate and decapsulate the packets. If the

hosts are connected to the same Leaf, the traffic is switched as normal.

67



• Inter-VXLAN: traffic between two hosts in different VXLANs. The VTEPs encap-

sulate the traffic and forward it to the L3 gateway in the Spine, which decapsulates,

encapsulates again and forwards to the other VTEP.

• Overlay to Underlay: traffic between one host in a VXLAN, and a host with no

VXLAN membership. The VXLAN traffic is encapsulated in the Leaves and decap-

sulated in the Spine, which forwards it to the other host through the underlay. The

normal traffic is encapsulated in the Spine, which forwards it to the VTEP in the

Leaves.

12.1 Spirent tests

Spine

Leaf 1 Leaf 2

Host 1 Host 2 Host 3 Host 4

VXLAN 1 VXLAN 1VXLAN 2 NO VXLAN

Underlay eBGP

Overlay iBGP

Route reflector

Figure 12.2: Spirent test topology

In this topology there are 4 Spirent emulated servers. The Leaves’ ports have been configured

with the VXLAN memberships as seen in figure 12.2 (VLANs are untagged). Using the

presented setup, each host sends traffic to the other at 10Gbps. There are 6 bidirectional

flows:

• Host 1 - Host 2 (inter-VXLAN)

• Host 1 - Host 3 (intra-VXLAN)

• Host 1 - Host 4 (overlay to underlay)

• Host 2 - Host 3 (inter-VXLAN)

• Host 2 - Host 4 (overlay to underlay)

• Host 3 - Host 4 (overlay to underlay)

68



The goal of this test is to see if the overlay flows can reach line rate. The results are

positive.

All flows have been tested independently. All reached line rate and didn’t have any losses.

Then all flows ran at the same time, also without problems.

Figure 12.3: Spirent flows

12.2 Netbench tests

Netbench is a network-testing framework developed at CERN, based on commodity servers

and Network Interface Cards (NIC), that enables assessing the devices’ behavior when

handling multiple TCP flows, which closely resembles real-life usage.

Spine

Leaf 1 Leaf 2

Host 1 Host 2 Host 4 Host 5

VXLAN 1 VXLAN 1 VXLAN 2 NO VXLAN

Underlay eBGP

Overlay iBGP

Route reflector

Host 3 Host 3

VXLAN 1 VXLAN 1

Figure 12.4: Netbench test topology

In this topology there are 6 physical servers running Netbench. The Leaves’ ports have been

configured with the VXLAN memberships as seen in figure 12.4 (VLANs are untagged).

Using the presented setup, each host sends 4 traffic flows to each other. To calculate the

total number of flows: (
6
2

)
· 4 = 6!

2!(6 − 2)! · 4 = 60

69



So in total there are 60 bidirectional flows (24 intra-VXLAN, 16 inter-VXLAN and 20

overlay to underlay). The goal of this test is to see how the overlay TCP flows are balanced.

The graphs below show the results. The internal name of the hosts appear in the horizontal

axis: nb-n039-01 is Host 1, nb-n039-02 is Host 2, nb-n039-03 is Host 3, nb-n040-01 is Host

4, nb-n040-02 is Host 5, nb-n040-03 is Host 6.

Figure 12.5: Number of flows per node

Figure 12.6: Transmission and reception bandwidth per server

Figure 12.6 shows the transmission and reception bandwidth of each server. There are some

important things happening in the graph:

70



• Server bandwidth imbalance: ideally, all servers would have the same bandwidth

Normally it’s acceptable to have a few small imbalances, however in this case they

are significant.

• Tx/Rx imbalance: the transmission and reception bandwidth is not the same in any

server.

• Symmetry: the first 3 servers (connected to Leaf 1) have the same patterns as the last

3 servers (connected to Leaf 2). Specifically, the pairs of hosts 1 and 4, 2 and 5, 3

and 6 have the same pattern.

Note that, since all links in the topology are 40GbE, there’s a 3:1 oversubscription in the

uplinks. This leads to imbalances, depending on which flows traverse these oversubscribed

links.

For example, let’s focus on the TX traffic from host 3. All traffic will have to cross the

leaf-spine uplink. This link is traversed by 52 flows:

• 36: hosts 1,2,3 sending to hosts 4,5,6, multiplied by 4 (number of connections per

pair)

• 8: hosts 1,2 sending to host 3, multiplied by 4

• 8: host 3 sending to hosts 1,2, multiplied by 4

Then, the average per-flow bandwidth should be 0.77Gbps (40Gb/52flows). This matches
nicely the result from figure 12.7). The total TX bandwidth from host 3 should be 15.4Gbps
(20flows · 0.77Gbps), which again matches nicely the result from figure 12.6). Therefore,

the observed server bandwidth imbalance is not related to crossing a VXLAN tunnel, but to

the over-subscription of the leaf-spine uplinks.

Regarding the Tx/Rx imbalance, we doubled the number of flows to see if the balance

would improve, but it didn’t. We also changed the ports of the servers without success.

Therefore, it’s not clear if the problem are the switches or the servers. Juniper has stated

that the current Junos firmware is not totally stable and has some bugs. A stable release is

planned to be released around December 2017.

In addition, hosts don’t achieve line-rate. This is most likely due to the fact that 4 TCP

flows per pair of servers are not enough to fully drive the NIC to line-rate. Doubling this

number would probably allow to fully drive the 40GbE NICs.

In figure 12.7 we can also see that the flows from hosts 1, 2, 4 and 5 have a very high

standard deviation. This is because some of these flows are switched locally in the leaves,

while others must reach the L3 gateway in the spine. All flows from hosts 3 and 6 must

reach the spine.

71



Figure 12.7: Bandwidth mean and standard deviation

Figure 12.8: Throughput per pair of flows

12.3 Configuration

In this section, the configuration applied to each switch for the Netbench tests is explained.

Note that the Juniper configuration language is totally different to Brocade’s.

72



Spine

The Spine has two physical 40GbE interfaces, each one connected to a Leaf. In addition

it has two irb interfaces (i.e. L3 virtual interfaces), which act as L3 gateways for each

VXLAN. Each has a unique IP address (which is not really used, but JunOS requires it)

and a virtual gateway address (which would be shared with other Spines that acted as L3

gateways). Finally, it has two loopback interfaces: one for the physical device and one for

the VRF that we will create later.

interfaces {
et-0/0/22 {

description "to leaf1 et-0/0/48";
vlan-tagging;
mtu 9216;
unit 0 {

vlan-id 1;
family inet {

address 10.92.51.1/24;
}

}
}
et-0/0/24 {

description "to leaf2 et-0/0/50";
vlan-tagging;
mtu 9216;
unit 0 {

vlan-id 1;
family inet {

address 10.92.52.1/24;
}

}
}

irb {
unit 100 {

family inet {
address 10.92.100.211/24 {

virtual-gateway-address 10.92.100.1;
}

}
}
unit 200 {

family inet {
address 10.92.200.211/24 {

virtual-gateway-address 10.92.200.1;
}

}
}

}
lo0 {

73



unit 0 {
family inet {

address 10.91.1.1/32;
}

}
unit 1 {

family inet {
address 127.10.0.1/32;

}
}

}
}

Routing Information Base (RIB) groups can be used to specify the RIBs a routing protocol

uses when it is importing and exporting routes. In routing-options we create rib-groups

for the purpose of leaking underlay routes to the EVPN VRF so that overlay servers can

communicate with underlay servers.

Let’s take a look at UNDERLAY-TO-OVERLAY. The import-rib statement indicates that

routes from table inet.0 (the default routing table) will be sharedwith the table cust0100.inet.0

(the routing table of the EVPN VRF we will create later). The import-policy statement

indicates that the policy UNDERLAY-FILTER will filter which routes shared.

In routing-options we also specify the AS number for the underlay (which can be also done

under protocols bgp). Finally, we use export load-balancing-policy to enable ECMP.

routing-options {
static {

route 0.0.0.0/0 {
next-hop 10.16.134.1;
no-readvertise;

}
}
rib-groups {

UNDERLAY-TO-OVERLAY {
import-rib [ inet.0 cust0100.inet.0 ];
import-policy UNDERLAY-FILTER;

}
OVERLAY-TO-UNDERLAY {

import-rib [ cust0100.inet.0 inet.0 ];
}

}
router-id 10.91.1.1;
autonomous-system 65000;
forwarding-table {

export load-balancing-policy;
}

}

74



Under protocols we set the configuration for BGP and EVPN. In the underlay we set eBGP:

advertise routes based on the policy send-direct, set multipath and set peers. We also need to

set the rib-group UNDERLAY-TO-OVERLAY so it has effect. In the overlay we set iBGP:

signal EVPN, set the router as RR and set peers. Under evpn, we set the encapsulation

and create the VXLAN Network Identifiers (VNI) 100 and 200. The vrf-target statement

indicates that the routes which contain the specified Route Target community [45] are

identified as belonging to that VNI.

protocols {
bgp {

group underlay {
type external;
family inet {

unicast {
rib-group UNDERLAY-TO-OVERLAY;

}
}
export send-direct;
multipath;
neighbor 10.92.51.2 {

description Leaf1_Underlay;
peer-as 65001;

}
neighbor 10.92.52.2 {

description Leaf2_Underlay;
peer-as 65002;

}
}
group evpn {

type internal;
local-address 10.91.1.1;
family evpn {

signaling;
}
cluster 2.2.2.2;
local-as 65005;
multipath;
neighbor 10.92.99.91 {

description Leaf1_Overlay;
}
neighbor 10.92.99.92 {

description Leaf2_Overlay;
}

}
}
evpn {

vni-options {
vni 100 {

vrf-target target:10001:1;
}

75



vni 200 {
vrf-target target:10001:2;

}
}
encapsulation vxlan;
multicast-mode ingress-replication;
extended-vni-list all;

}

}

Next we define the policies and communities. The policy EVPN-VRF-IMPORT is for

the EVPN VRF. It just tells to accept the routes from community cust0100. The policy

UNDERLAY-FILTER is used for leaking specific networks from the underlay to the overlay.

The load-balancing-policy is self-explanatory, and the policy send-direct is the one we used

in BGP so Leaves advertise all directly connected networks. cust0100 is the community for

the overlay.

policy-options {
policy-statement EVPN-VRF-IMPORT {

term switch_options_comm {
from community switch_options_comm;
then accept;

}
term cust0100 {

from community cust0100;
then accept;

}
}
policy-statement UNDERLAY-FILTER {

term 1 {
from {

route-filter 10.92.150.0/24 exact;
}
then accept;

}
term 2 {

then reject;
}

}
policy-statement load-balancing-policy {

then {
load-balance per-packet;

}
}
policy-statement send-direct {

term 10 {
from protocol direct;
then accept;

}

76



}
community cust0100 members target:10001:1;
community switch_options_comm members target:65000:2;

}

Here we create the VRF for EVPN: specify the interfaces and set the policies.

routing-instances {
cust0100 {

instance-type vrf;
interface irb.100;
interface irb.200;
interface lo0.1;
route-distinguisher 10.91.1.1:2001;
vrf-import EVPN_VRF_IMPORT;
vrf-target target:65000:2;
routing-options {

interface-routes {
rib-group inet OVERLAY-TO-UNDERLAY;

}
}

}
}

In switch-options, specify that the VTEP interface is the loopback 0.

switch-options {
vtep-source-interface lo0.0;
route-distinguisher 10.91.1.1:1;
vrf-import EVPN_VRF_IMPORT;
vrf-target target:65000:2;

}

Here we create the VXLANs and specify the members. In JunOS, each VXLAN must be

mapped to a VLAN (but they can have different id). We specify that each irb interface will

act as L3 gateway for that VLAN.

vlans {
bd1000 {

vlan-id 100;
l3-interface irb.100;
vxlan {

vni 100;
ingress-node-replication;

}
}
bd2000 {

vlan-id 200;
l3-interface irb.200;
vxlan {

vni 200;

77



ingress-node-replication;
}

}
netbench {

description "Netbench switching tests";
vlan-id 3000;

}
}

Leaf 1

The configuration for the Leaves is similar to the Spine’s but simpler. Leaf 1 has one

interface to the spine and 3 interfaces to hosts 1 to 3.

interfaces {
et-0/0/48 {

description "to spine et-0/0/22";
enable;
vlan-tagging;
mtu 9216;
unit 0 {

vlan-id 1;
family inet {

address 10.92.51.2/24;
}

}
}
et-0/0/49 {

description "Host 1 VXLAN 100 (39-01)";
enable;
unit 0 {

family ethernet-switching {
interface-mode access;
vlan {

members 100;
}

}
}

}
et-0/0/50 {

description "Host 2 VXLAN 100 (39-02)";
enable;
unit 0 {

family ethernet-switching {
interface-mode access;
vlan {

members 100;
}

78



}
}

}
et-0/0/51 {

description "Host 3 VXLAN 200 (39-03)";
enable;
unit 0 {

family ethernet-switching {
interface-mode access;
vlan {

members 200;
}

}
}

}

lo0 {
unit 0 {

family inet {
address 10.92.99.91/32;

}
}

}
}
routing-options {

static {
route 0.0.0.0/0 {

next-hop 10.16.134.1;
no-readvertise;

}
}
router-id 10.92.99.91;
autonomous-system 65001;
forwarding-table {

export load-balancing-policy;
}

}
protocols {

bgp {
group underlay {

type external;
export send-direct;
peer-as 65000;
multipath;
neighbor 10.92.51.1 {

description Spine_Underlay;
}

}
group evpn {

type internal;

79



local-address 10.92.99.91;
family evpn {

signaling;
}
local-as 65005;
multipath;
neighbor 10.91.1.1 {

description Spine_Overlay;
}

}
}
evpn {

vni-options {
vni 100 {

vrf-target target:10001:1;
}
vni 200 {

vrf-target target:10001:2;
}

}
encapsulation vxlan;
multicast-mode ingress-replication;
extended-vni-list all;

}
}
policy-options {

policy-statement EVPN_VRF_IMPORT {
term switch_options_comm {

from community switch_options_comm;
then accept;

}
term cust0100 {

from community cust0100;
then accept;

}
}
policy-statement load-balancing-policy {

then {
load-balance per-packet;

}
}
policy-statement send-direct {

term 10 {
from protocol direct;
then accept;

}
}
community cust0100 members target:10001:1;
community switch_options_comm members target:65000:2;

}

80



switch-options {
vtep-source-interface lo0.0;
route-distinguisher 10.92.99.91:1;
vrf-import EVPN_VRF_IMPORT;
vrf-target target:65000:2;

}
vlans {

bd100 {
vlan-id 100;
vxlan {

vni 100;
ingress-node-replication;

}
}
bd200 {

vlan-id 200;
vxlan {

vni 200;
ingress-node-replication;

}
}
default {

vlan-id 1;
}

}

Leaf 2

Leaf 2 configuration is almost identical to Leaf 1. It has one interface to the spine and 3

interfaces to hosts 4 to 6.

interfaces {
et-0/0/48 {

description "to spine et-0/0/24";
enable;
vlan-tagging;
mtu 9216;
unit 0 {

vlan-id 1;
family inet {

address 10.92.52.2/24;
}

}
}
et-0/0/49 {

description "Host 4 VXLAN 100 (40-01)";
enable;
unit 0 {

81



family ethernet-switching {
interface-mode access;
vlan {

members 100;
}

}
}

}
et-0/0/50 {

description "Host 5 VXLAN 100 (40-02)";
enable;
unit 0 {

family ethernet-switching {
interface-mode access;
vlan {

members 100;
}

}
}

}
et-0/0/51 {

description "Host 6 VLAN 99 (40-03)";
enable;
unit 0 {

family ethernet-switching {
interface-mode access;
vlan {

members 99;
}

}
}

}
irb {

unit 1 {
family inet {

address 10.92.150.1/24;
}

}
}
lo0 {

unit 0 {
family inet {

address 10.92.99.92/32;
}

}
}

}

routing-options {
static {

82



route 0.0.0.0/0 {
next-hop 10.16.134.1;
no-readvertise;

}
}
router-id 10.92.99.92;
autonomous-system 65002;
forwarding-table {

export load-balancing-policy;
}

}
protocols {

bgp {
group underlay {

type external;
export send-direct;
peer-as 65000;
multipath;
neighbor 10.92.52.1;

}
group evpn {

type internal;
local-address 10.92.99.92;
family evpn {

signaling;
}
local-as 65005;
multipath;
neighbor 10.91.1.1 {

description Spine_Overlay;
}

}
}
evpn {

vni-options {
vni 100 {

vrf-target target:10001:1;
}
vni 200 {

vrf-target target:10001:2;
}

}
encapsulation vxlan;
multicast-mode ingress-replication;
extended-vni-list all;

}
}
policy-options {

policy-statement EVPN_VRF_IMPORT {
term switch_options_comm {

83



from community switch_options_comm;
then accept;

}
term cust0100 {

from community cust0100;
then accept;

}

}
policy-statement load-balancing-policy {

then {
load-balance per-packet;

}
}
policy-statement send-direct {

term 10 {
from protocol direct;
then accept;

}
}
community cust0100 members target:10001:1;
community switch_options_comm members target:65000:2;

}
switch-options {

vtep-source-interface lo0.0;
route-distinguisher 10.92.99.92:1;
vrf-import EVPN_VRF_IMPORT;
vrf-target target:65000:2;

}
vlans {

bd100 {
vlan-id 100;
vxlan {

vni 100;
ingress-node-replication;

}
}
bd200 {

vlan-id 200;
vxlan {

vni 200;
ingress-node-replication;

}
}
default {

vlan-id 1;
}
vlan99 {

vlan-id 99;
l3-interface irb.1;

84



}
}

12.4 Summary

These tests have been useful to understand the behavior of flows in the EVPN overlay. In

particular, the Juniper QFX implementation handles multiple overlay flows quite well, with

a few issues that haven’t been well understood.

To understand better the Tx/Rx imbalances in the Netbench tests, the tests could be redone

doubling the number of flows and converting the uplinks to a 3x40GbE LAG to avoid

oversubscription.

85





13 Conclusion

13.1 Evaluation results

The results of the evaluation are very satisfactory. The IP Fabric has proved to be a good

solution to increase the redundancy and provide traffic isolation and VM mobility with

EVPN.

In chapter 6 we conclude that eBGP is the most adequate protocol to use for CERN’s DC

underlay. We have identified necessary and suboptimal paths, the benefits of organizing

the routers in clusters and the usefulness of ECMP (one of the most important IP Fabric

features). We have discussed the options for managing Point-to-Point links, putting a router

on maintenance and minimizing convergence time.

In chapter 7 we have analyzed quantitatively the best-case and worst-case BGP table sizes

for each router in the fabric. We have written general mathematical expressions that allow

to calculate these sizes depending on the number of advertised routes, the number of routers

in each layer of the fabric and cluster, and how they are connected. These numbers allow to

verify if the configuration is viable, and if not justify the filtering of certain groups of routes.

In an scenario approximate to CERN’s DC, we have found that the number of suboptimal

paths identified as Red paths is too large. They shouldn’t be installed in the BGP tables to

save memory and potentially improve convergence time.

In chapter 8 many different ASN distribution policies have been discussed for each layer of

the fabric. Some policies require more configuration, extra complexity or explicit filters of

unnecessary paths. A combination of policies should be chosen depending on the capabilities

of the routers and the preferences of the network engineers.

In chapter 9 we have introduced the need for network virtualization and its advantages. We

have discussed EVPN, the state-of-the-art protocol to create overlays in the data center.

Unlike in the underlay, iBGP is the best option for an EVPN overlay.

After finishing the theoretical evaluation, in chapter 10 we have presented our architecture

proposal for CERN’s DC. In chapter 11 we have built test topologies with Brocade switches

in the lab in order to verify that the research we have made in previous chapters is correct.

The tests comprise route advertisement, load-balancing and convergence time in a complex

IP Fabric. We have found that route advertisement and learning works as predicted. The

expressions developed in chapter 7 have been confirmed to be correct. Load-balancing in

these devices is also working well. The third test has studied the variation in convergence

time depending on the filtering of Red paths. The result indicates that convergence isn’t

slower when allowing Red paths and that convergence time seems to be random and

unpredictable when tested multiple times in the same conditions. Therefore, filtering Red

paths should be done in order to save router memory, but from this test scenario we cannot

conclude that convergence will be faster.

87



Although the Brocade switches have the necessary features to implement a solid IP Fabric

underlay, we have found that their resources are limited in terms of supported BGP peers

and number of routes installed. To implement the IP Fabric at the scale of CERN’s DC,

different switches will be needed, specially if EVPN is desired. The Juniper switches used

for the EVPN tests are a good candidate.

Finally, in chapter 12 we have tested an IP Fabric with EVPN VXLAN. We have found that

Juniper’s QFX implementation handles multiple overlay flows quite well, with a few issues

that haven’t been well understood.

To conclude, CERN will benefit from implementing the state-of-the-art data center network

architecture, IP Fabric with EVPN VXLAN. However, better network equipment will need

to be installed in order to deploy the solution at the scale of CERN’s DC.

13.2 Achievements

This thesis has achieved two goals. First, it is a detailed theoretical and practical evaluation

made specifically for CERN’s data center, which has been reviewed by network engineers.

A working group was created in the IT department in order to collect the requirements from

all groups that develop or maintain resources in the DC. The IP Fabric with EVPN complies

with the requirements and the architecture change has been approved. This document will

be a guide for the staff in the CE section to implement the IP Fabric throughout 2018 and

2019.

Second, it provides new insights of the IP Fabric that are not publicly available in the

literature. Chapter 7 shows the importance of calculating the size of BGP tables and

provides general expressions to do it. Chapter 8 contains an exhaustive list of different ASN

distribution policies and their consequences. Chapter 6 can be read as a detailed introduction

and guide for IP Fabric.

On a personal level, this project has allowed me to learn how a real data center works

architecturally and operationally. I’ve been able to work with high-end routers and I have

acquired advanced networking concepts which will be useful in my professional career.

13.3 Future work

Port oversubscription hasn’t been discussed in this evaluation. Oversubscription depends on

the number of ports dedicated to uplinks and their bandwidth capacity. The port density found

in today’s switches is very high, the market has linecards with 40 100GbE ports. Therefore,

for CERN’s DC, having oversubscription should be decided based on a future discussion

with the teams that provide DC services. Depending on the bandwidth requirements a

certain oversubscription may be acceptable – recent discussions aim for a 5:1. For data

centers larger than CERN’s, such as those companies like Facebook and Google could have,

88



oversubscription may not be acceptable in any case and thus it cannot be decoupled from

the design of the IP Fabric itself.

Future research work which would be of interest would consist in extending the convergence

time test done in chapter 11. This would allow a better understanding of the relation between

convergence time and the advertisement and learning of a large number of suboptimal paths.

Unfortunately, it will be difficult to obtain reliable results for a large-scale data center.

Regarding EVPN, a more detailed study should be carried out, comprising scenarios similar

to what CERN needs. This would provide a deeper understanding of the protocol and its

limitations.

In addition, more research will be needed to find a router model that has the necessary

resources to deploy the IP Fabric at CERN’s scale.

Lastly, it must be noted that this evaluation concerns mostly the architectural aspect of the IP

Fabric. As a continuation of this work, it is advisable to develop a report on the operational

procedures regarding the implementation, upgrade and maintenance of the architecture.

89





A Appendix: Python script to
generate configuration

# To edit:
asn = 65301
num_networks = 8

num_routers = 2
offset = 0 # To add more peers after the first time

iface1 = "1/5"
iface2 = "1/6"
########################################################################
asn = asn + offset
vlan_base1 = 700 + offset
vlan_base2 = 800 + offset
loopback_base = 55
vrfname = "spine"

# To Spine 1
for i in range(num_routers):

num = vlan_base1 + i
print("vlan {}".format(num))
print("tagged ethernet {}".format(iface1))
print("router-interface ve {}".format(num))
print("exit")

# To Spine 2
for i in range(num_routers):

num = vlan_base2 + i
print("vlan {}".format(num))
print("tagged ethernet {}".format(iface2))
print("router-interface ve {}".format(num))
print("exit")

print("\n\n")

for i in range(num_routers):
iaux = i + offset
print("vrf {}{}".format(vrfname, iaux))
print("rd {0}:{0}".format(10+iaux))
print("address-family ipv4")
print("exit-address-family")
print("address-family ipv6")
print("exit-address-family")
print("exit-vrf")

91



print("\n\n")

# To Spine 1
for i in range(num_routers):

num = vlan_base1 + i
iaux = i + offset
print("interface ve {}".format(num))
print("vrf forwarding {}{}".format(vrfname, iaux))
print("ip address 10.94.{}.2/24".format(iaux))
print("ipv6 address fd01:1458:306:94{}::2/64".format('{0:02x}'.format(
iaux)))

# To Spine 2
for i in range(num_routers):

num = vlan_base2 + i
iaux = i + offset
print("interface ve {}".format(num))
print("vrf forwarding {}{}".format(vrfname, iaux))
print("ip address 10.95.{}.2/24".format(iaux))
print("ipv6 address fd01:1458:306:95{}::2/64".format('{0:02x}'.format(
iaux)))

print("\n\n")

print("router bgp")
current_host = 1 + offset*num_networks%254
current_byte = 1 + offset*num_networks//254
current_host_v6 = 1 + offset*num_networks
for i in range(num_routers):

iaux = i + offset
print("address-family ipv4 unicast vrf {}{}".format(vrfname, iaux))
print("local-as {}".format(asn+i))
print("neighbor 10.94.{}.1 remote-as {}".format(iaux, 65001))
print("neighbor 10.95.{}.1 remote-as {}".format(iaux, 65002))
for j in range(num_networks):

print("network 10.93.{}.{}/32".format(current_byte, current_host))
current_host += 1
if current_host == 256:

current_byte += 1
current_host = 1

print("exit-address-family")

print("address-family ipv6 unicast vrf {}{}".format(vrfname,iaux))
print("neighbor fd01:1458:306:94{}::1 remote-as {}".format('{0:02x}'.

format(iaux), 65001))
print("neighbor fd01:1458:306:94{}::1 activate".format('{0:02x}'.

format(iaux)))
print("neighbor fd01:1458:306:95{}::1 remote-as {}".format('{0:02x}'.

format(iaux), 65002))

92



print("neighbor fd01:1458:306:95{}::1 activate".format('{0:02x}'.
format(iaux)))
for j in range(num_networks):

print("network fd01:1458:306:4{}::5/64".format('{0:03x}'.format(
current_host_v6)))

current_host_v6 += 1

print("exit-address-family")
print("exit")

print("\n\n")

current_host = 1 + offset*num_networks%254
current_byte = 1 + offset*num_networks//254
current_host_v6 = 1 + offset*num_networks
for i in range(num_routers):

iaux = i + offset
print("interface loopback {}".format(loopback_base + iaux))
print("vrf forwarding {}{}".format(vrfname,iaux))
for j in range(num_networks):

print("ip address 10.93.{}.{}/32".format(current_byte,
current_host))

current_host += 1
if current_host == 256:

current_byte += 1
current_host = 1

print("ipv6 address fd01:1458:306:4{}::5/64".format('{0:03x}'.
format(current_host_v6)))

current_host_v6 += 1
print("exit")

93





Bibliography

[1] About CERN. URL: https://home.cern/about.

[2] CERN computing. URL: https://home.cern/about/computing.

[3] CERN Data Centre passes the 200-petabyte milestone. URL: https://home.
cern/about/updates/2017/07/cern-data-centre-passes-200-petabyte-
milestone.

[4] About the IT department. URL: http://information-technology.web.cern.
ch/about.

[5] P. Lapukhov, A. Premji, and J. Mitchell. Use of BGP for Routing in Large-Scale

Data Centers. RFC 7938. RFC Editor, Aug. 2016.

[6] Routing Design for Large Scale Data Centers. URL: https://www.nanog.org/
meetings/nanog55/presentations/Monday/Lapukhov.pdf.

[7] Introducing data center fabric, the next-generation Facebook data center network.

URL: https://code.facebook.com/posts/360346274145943/introducing-
data - center - fabric - the - next - generation - facebook - data - center -
network/.

[8] Cisco Data Center Spine-and-Leaf Architecture. URL: https://www.cisco.
com / c / en / us / products / collateral / switches / nexus - 7000 - series -
switches/white-paper-c11-737022.html.

[9] Clos IP Fabrics with QFX5100 Switches. URL: https://www.juniper.net/
assets/fr/fr/local/pdf/whitepapers/2000565-en.pdf.

[10] Brocade IP Fabric Architecture. URL: http://www.brocade.com/content/
html/en/brocade-validated-design/brocade-ip-fabric-architecture-
bvd/GUID-9CE13482-291E-4500-AAFE-33583B69B0D6.html.

[11] Network Virtualization in IP Fabric with BGP EVPN. URL: http://www.brocade.
com/content/dam/common/documents/content-types/brocade-validated-
design/brocade-ip-fabric-bvd.pdf.

[12] Clos Networks: What’s Old Is New Again. URL: https://www.networkworld.
com/article/2226122/cisco-subnet/clos-networks--what-s-old-is-
new-again.html.

[13] Understanding Border Gateway Protocol. URL: https://www.juniper.net/
documentation/en_US/junos/topics/concept/bgp-routing-overview.
html.

[14] Open Shortest Path First. URL: https://www.cisco.com/c/en/us/products/
ios-nx-os-software/open-shortest-path-first-ospf/index.html.

[15] Understanding Equal Cost Multi Path. URL: https : / / www . juniper . net /
documentation/en_US/junos/topics/concept/routing-policy-security-
ecmp-flow-based-forwarding-understanding.html.

95

https://home.cern/about
https://home.cern/about/computing
https://home.cern/about/updates/2017/07/cern-data-centre-passes-200-petabyte-milestone
https://home.cern/about/updates/2017/07/cern-data-centre-passes-200-petabyte-milestone
https://home.cern/about/updates/2017/07/cern-data-centre-passes-200-petabyte-milestone
http://information-technology.web.cern.ch/about
http://information-technology.web.cern.ch/about
https://www.nanog.org/meetings/nanog55/presentations/Monday/Lapukhov.pdf
https://www.nanog.org/meetings/nanog55/presentations/Monday/Lapukhov.pdf
https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/white-paper-c11-737022.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/white-paper-c11-737022.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/white-paper-c11-737022.html
https://www.juniper.net/assets/fr/fr/local/pdf/whitepapers/2000565-en.pdf
https://www.juniper.net/assets/fr/fr/local/pdf/whitepapers/2000565-en.pdf
http://www.brocade.com/content/html/en/brocade-validated-design/brocade-ip-fabric-architecture-bvd/GUID-9CE13482-291E-4500-AAFE-33583B69B0D6.html
http://www.brocade.com/content/html/en/brocade-validated-design/brocade-ip-fabric-architecture-bvd/GUID-9CE13482-291E-4500-AAFE-33583B69B0D6.html
http://www.brocade.com/content/html/en/brocade-validated-design/brocade-ip-fabric-architecture-bvd/GUID-9CE13482-291E-4500-AAFE-33583B69B0D6.html
http://www.brocade.com/content/dam/common/documents/content-types/brocade-validated-design/brocade-ip-fabric-bvd.pdf
http://www.brocade.com/content/dam/common/documents/content-types/brocade-validated-design/brocade-ip-fabric-bvd.pdf
http://www.brocade.com/content/dam/common/documents/content-types/brocade-validated-design/brocade-ip-fabric-bvd.pdf
https://www.networkworld.com/article/2226122/cisco-subnet/clos-networks--what-s-old-is-new-again.html
https://www.networkworld.com/article/2226122/cisco-subnet/clos-networks--what-s-old-is-new-again.html
https://www.networkworld.com/article/2226122/cisco-subnet/clos-networks--what-s-old-is-new-again.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/bgp-routing-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/bgp-routing-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/bgp-routing-overview.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/open-shortest-path-first-ospf/index.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/open-shortest-path-first-ospf/index.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/routing-policy-security-ecmp-flow-based-forwarding-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/routing-policy-security-ecmp-flow-based-forwarding-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/routing-policy-security-ecmp-flow-based-forwarding-understanding.html


[16] Understanding Aggregated Ethernet Interfaces and LACP. URL: https://www.
juniper.net/documentation/en_US/junos/topics/concept/interfaces-
lag-overview.html.

[17] Bidirectional Forwarding Detection. URL: https://www.cisco.com/c/en/us/
td/docs/ios/12_0s/feature/guide/fs_bfd.html.

[18] Brocade SLX switch. URL: https://www.brocade.com/content/dam/common/
documents/content-types/datasheet/brocade-slx-9540-switch-ds.pdf.

[19] Brocade ICX switch. URL: http://www.brocade.com/en/products-services/
switches/campus-network-switches/icx-7750-switch.html.

[20] Brocade MLX switch. URL: http : / / www . brocade . com / en / products -
services/routers/mlx-series.html.

[21] Spirent TestCenter. URL: https://www.spirent.com/~/media/Datasheets/
Broadband/PAB/SpirentTestCenter/SPT-N11U_Mainframe_Chassis_Datasheet.
pdf.

[22] Brocade SLX price. URL: https://www.connection.com/product/brocade-
slx - 9540 - 48s - 48 - port - 10gbe - switch - w - ac - front - to - back - air -
6x100gbe-40gbe/br-slx-9540-48s-ac-f/33527010.

[23] Brocade ICX price. URL: https://www.cdw.com/shop/products/Brocade-
ICX-7750-48F-switch-48-ports-managed-rack-mountable/3205248.aspx.

[24] Brocade MLX price. URL: http://www.dataswitchworks.com/MLX-16.asp.

[25] Spirent price. URL: http://www.smartechconsulting.com/SPIRENT-TESTCENTER-
HYPERMETRICS-NEXT-SERIES-11U-CHASSIS/.

[26] Network Engineer salary in Switzerland. URL: https://www.payscale.com/
research/CH/Job=Network_Engineer/Salary.

[27] Software Engineer salary in Switzerland. URL: https://www.payscale.com/
research/CH/Job=Software_Engineer/Salary.

[28] Switzerland energy statistics. URL: http://energymarketprice.com/products/
access_SwitzerlandEnergyStatistics.pdf.

[29] Brocade SLX technical specifications. URL: http://www.brocade.com/content/
html/en/hardware-installation-guide/slxr-9540-installguide/GUID-
4CD87DB2-DDE5-4C26-957A-248156B3083B.html.

[30] Brocade ICX technical specifications. URL: http://www.brocade.com/content/
html/en/technical-specification/fastiron-icx7750-technicalspecification/
GUID-E303B307-B13B-4B2C-A176-EA2158FAC83F.html.

[31] Brocade MLX technical specifications. URL: http : / / www . brocade . com /
content / html / en / hardware - installation - guide / netiron - 05900a -
mlxeinstallguide/GUID-2C2921BB-5D39-43A2-B443-EEAADBBA1DB7.html.

[32] BGP Best Path Selection Algorithm. URL: https://www.cisco.com/c/en/us/
support/docs/ip/border-gateway-protocol-bgp/13753-25.html.

96

https://www.juniper.net/documentation/en_US/junos/topics/concept/interfaces-lag-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/interfaces-lag-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/interfaces-lag-overview.html
https://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/fs_bfd.html
https://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/fs_bfd.html
https://www.brocade.com/content/dam/common/documents/content-types/datasheet/brocade-slx-9540-switch-ds.pdf
https://www.brocade.com/content/dam/common/documents/content-types/datasheet/brocade-slx-9540-switch-ds.pdf
http://www.brocade.com/en/products-services/switches/campus-network-switches/icx-7750-switch.html
http://www.brocade.com/en/products-services/switches/campus-network-switches/icx-7750-switch.html
http://www.brocade.com/en/products-services/routers/mlx-series.html
http://www.brocade.com/en/products-services/routers/mlx-series.html
https://www.spirent.com/~/media/Datasheets/Broadband/PAB/SpirentTestCenter/SPT-N11U_Mainframe_Chassis_Datasheet.pdf
https://www.spirent.com/~/media/Datasheets/Broadband/PAB/SpirentTestCenter/SPT-N11U_Mainframe_Chassis_Datasheet.pdf
https://www.spirent.com/~/media/Datasheets/Broadband/PAB/SpirentTestCenter/SPT-N11U_Mainframe_Chassis_Datasheet.pdf
https://www.connection.com/product/brocade-slx-9540-48s-48-port-10gbe-switch-w-ac-front-to-back-air-6x100gbe-40gbe/br-slx-9540-48s-ac-f/33527010
https://www.connection.com/product/brocade-slx-9540-48s-48-port-10gbe-switch-w-ac-front-to-back-air-6x100gbe-40gbe/br-slx-9540-48s-ac-f/33527010
https://www.connection.com/product/brocade-slx-9540-48s-48-port-10gbe-switch-w-ac-front-to-back-air-6x100gbe-40gbe/br-slx-9540-48s-ac-f/33527010
https://www.cdw.com/shop/products/Brocade-ICX-7750-48F-switch-48-ports-managed-rack-mountable/3205248.aspx
https://www.cdw.com/shop/products/Brocade-ICX-7750-48F-switch-48-ports-managed-rack-mountable/3205248.aspx
http://www.dataswitchworks.com/MLX-16.asp
http://www.smartechconsulting.com/SPIRENT-TESTCENTER-HYPERMETRICS-NEXT-SERIES-11U-CHASSIS/
http://www.smartechconsulting.com/SPIRENT-TESTCENTER-HYPERMETRICS-NEXT-SERIES-11U-CHASSIS/
https://www.payscale.com/research/CH/Job=Network_Engineer/Salary
https://www.payscale.com/research/CH/Job=Network_Engineer/Salary
https://www.payscale.com/research/CH/Job=Software_Engineer/Salary
https://www.payscale.com/research/CH/Job=Software_Engineer/Salary
http://energymarketprice.com/products/access_SwitzerlandEnergyStatistics.pdf
http://energymarketprice.com/products/access_SwitzerlandEnergyStatistics.pdf
http://www.brocade.com/content/html/en/hardware-installation-guide/slxr-9540-installguide/GUID-4CD87DB2-DDE5-4C26-957A-248156B3083B.html
http://www.brocade.com/content/html/en/hardware-installation-guide/slxr-9540-installguide/GUID-4CD87DB2-DDE5-4C26-957A-248156B3083B.html
http://www.brocade.com/content/html/en/hardware-installation-guide/slxr-9540-installguide/GUID-4CD87DB2-DDE5-4C26-957A-248156B3083B.html
http://www.brocade.com/content/html/en/technical-specification/fastiron-icx7750-technicalspecification/GUID-E303B307-B13B-4B2C-A176-EA2158FAC83F.html
http://www.brocade.com/content/html/en/technical-specification/fastiron-icx7750-technicalspecification/GUID-E303B307-B13B-4B2C-A176-EA2158FAC83F.html
http://www.brocade.com/content/html/en/technical-specification/fastiron-icx7750-technicalspecification/GUID-E303B307-B13B-4B2C-A176-EA2158FAC83F.html
http://www.brocade.com/content/html/en/hardware-installation-guide/netiron-05900a-mlxeinstallguide/GUID-2C2921BB-5D39-43A2-B443-EEAADBBA1DB7.html
http://www.brocade.com/content/html/en/hardware-installation-guide/netiron-05900a-mlxeinstallguide/GUID-2C2921BB-5D39-43A2-B443-EEAADBBA1DB7.html
http://www.brocade.com/content/html/en/hardware-installation-guide/netiron-05900a-mlxeinstallguide/GUID-2C2921BB-5D39-43A2-B443-EEAADBBA1DB7.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html


[33] T. Bates, E. Chen, and R. Chandra. BGP Route Reflection: An Alternative to Full

Mesh Internal BGP (IBGP). RFC 4456. RFC Editor, Apr. 2006.

[34] D. Walton et al. Advertisement of Multiple Paths in BGP. RFC 7911. RFC Editor,

July 2016.

[35] A. Retana et al. Using 31-Bit Prefixes on IPv4 Point-to-Point Links. RFC 3021. RFC

Editor, Dec. 2000.

[36] A. Kirkham. Issues with Private IP Addressing in the Internet. RFC 6752. RFC

Editor, Sept. 2012.

[37] A. Lindem et al. Support of Address Families in OSPFv3. RFC 5838. RFC Editor,

Apr. 2010.

[38] D. Katz and D. Ward. Bidirectional Forwarding Detection (BFD). RFC 5880. RFC

Editor, June 2010.

[39] M. Bhatia et al. Bidirectional Forwarding Detection (BFD) on Link Aggregation

Group (LAG) Interfaces. RFC 7130. RFC Editor, Feb. 2014.

[40] C. Villamizar, R. Chandra, and R. Govindan. BGP Route Flap Damping. RFC 2439.

RFC Editor, Nov. 1998.

[41] C. Pelsser et al. Making Route Flap Damping Usable. RFC 7196. RFC Editor, May

2014.

[42] J. Mitchell. Autonomous System (AS) Reservation for Private Use. BCP 6. RFC

Editor, July 2013.

[43] G. Huston and G. Michaelson. Textual Representation of Autonomous System (AS)

Numbers. RFC 5396. RFC Editor, Dec. 2008.

[44] T. Narten et al. Problem Statement: Overlays for Network Virtualization. RFC 7364.

RFC Editor, Oct. 2014.

[45] S. Sangli, D. Tappan, and Y. Rekhter. BGP Extended Communities Attribute. RFC

4360. RFC Editor, Feb. 2006.

97


	List of figures
	List of tables
	Acronyms
	I The project
	1 Introduction
	1.1 CERN
	1.2 The data center
	1.3 Context

	2 Background
	2.1 Layer 2 architectures
	2.2 State-of-the-art
	2.3 Technologies

	3 Objective
	3.1 Scope
	3.2 Possible obstacles
	3.3 Stakeholders

	4 Plan
	4.1 Methodology
	4.2 Tasks and schedule
	4.3 Resources
	4.4 Action plan
	4.5 Project budget

	5 Sustainability and social commitment
	5.1 Environmental dimension
	5.2 Economic dimension
	5.3 Social dimension
	5.4 Sustainability matrix


	II The evaluation
	6 IP Fabric features and options
	6.1 Routing protocol
	6.2 Route control
	6.3 iBGP
	6.4 eBGP
	6.5 Clusters
	6.6 Load balancing
	6.7 Point-to-Point networks
	6.8 Maintenance
	6.9 Convergence
	6.10 Summary

	7 BGP table scalability
	7.1 Leaves
	7.2 Spines
	7.3 Super Spines
	7.4 Example scenario
	7.5 Summary

	8 ASN distribution policy
	8.1 ASNs in Leaves
	8.2 ASNs in Spines
	8.3 ASNs in Super Spines
	8.4 Summary

	9 Overlay
	9.1 Network virtualization
	9.2 EVPN
	9.3 Summary

	10 Proposed solution
	10.1 Setup
	10.2 Configuration
	10.3 BGP table
	10.4 Summary

	11 Advanced BGP tests
	11.1 Setup
	11.2 Route advertisement
	11.3 Traffic load-balancing
	11.4 Convergence time
	11.5 Summary

	12 EVPN tests
	12.1 Spirent tests
	12.2 Netbench tests
	12.3 Configuration
	12.4 Summary

	13 Conclusion
	13.1 Evaluation results
	13.2 Achievements
	13.3 Future work

	A Appendix: Python script to generate configuration
	Bibliography


